На основе данных измерений биооптических свойств вод оз. Иссык-Кульский комплекс пассивного дистанционного зондирования для экологических Диптихов морских акваторий (ЭММА) с борта судна, а также измерения на пробах воды созданы и апробированы методики определения состава олиготрофных вод. Это третья часть метода дистанционного измерения концентраций основных морских и озерных вод с использованием аспекта легкой морской воды, разработанного нами ранее для мезотрофных и эвтрофных вод. С помощью этой методики были получены результаты концентрации пигментов фитопланктона, окрашенного органического вещества, взвеси и распределения их в акватории озера в течение трехдневного эксперимента в июле 2018 г.
Идентификаторы и классификаторы
В настоящее время ввиду запуска спутников с пассивными оптическими мульти- и гиперспектральными сканерами с высоким пространственным разрешением особенно актуальным стало изучение связи характеристик состава морской или озерной концентраций фитопланктона, окрашенного органического вещества и взвеси с ее оптическими характеристиками. Однако при обработке спутниковых данных следует учитывать особенности состава вод прибрежных акваторий, внутренних морей и озер. Для этого в каждой исследуемой акватории проводятся подспутниковые измерения и создаются региональные алгоритмы обработки спутниковой информации. Другой способ - предварительная классификация спектров отражения воды, полученных гиперспектральным сканером, и применение к каждому классу специального алгоритма. Здесь, однако, велики погрешности смеклассов при выделении одного из них (ошибки второго рода). Мы исходим из предпосылки, что вся информация о составе воды заключена в самом спектре отраженного водной толщей света.
Список литературы
1. Palmer SCJ, Kutser T., Hunter PD Дистанционное зондирование внутренних вод: проблемы, прогресс и будущие направления // Remote Sens. Environ. 2015. Т. 157. С. 1-8. EDN: UQGTKN
2. Mouw CB, Greb S., Aurin D., DiGiacomo PM, Lee Z.-P., Twardowski M., Binding C., Hu C., Ma R., Moore T., Moses W., Craig SE Дистанционное зондирование прибрежных и внутренних вод с помощью водной цветовой радиометрии: проблемы и рекомендации для будущих спутниковых миссий // Remote Sens. Environ. 2015. Т. 160. С. 15-30. EDN: QBYVML
3. Каралли П.Г., Копелевич О.В., Салинг И.В., Шеберстов С.В., Паутова Л.А., Силкин В.А. Проверка различий в оценках параметров кокколитофоридных цветений в Баренцевом море по данным натурных измерений // Фундамент. и прикл. гидрофиз. 2018. Т. 11, № 3. С. 55-63. EDN: MAGHNB
4. Элевельд МА, Руэскас АБ, Хоммерсом А., Мур Т.С., Питерс С.В.М., Брокманн К. Инструмент оптической классификации для мировых озерных вод // Remote Sens. 2017. Т. 9. С. 420-444.
5. Ростовцева В.В., Коновалов Б.В., Гончаренко И.В., Хлебников Д.В. Способность определять содержание примесей в морских водах с помощью оперативной спектрофотометрии // Океанология. 2017. Т. 57, № 4. С. 560-574. EDN: ZCRXXT
6. Ростовцева В.В. Метод получения спектров спектра морской воды по данным пассивного радиозондирования с борта корабля с использованием свойств чистой воды // Оптика атмосф. и океан. 2015. Т. 28, № 11. С. 1003-1011. EDN: UOHHSNR
7. Ростовцева В.В., Гончаренко И.В., Коновалов Б.В., Алюкаева А.Ф. Оперативная оценка состояния морских акваторий по данным пассивного оптического зондирования поверхности воды на борту судна // Оптика атмосф. и океан. 2017. Т. 30, № 12. С. 1017-1022. EDN: ZXLZPP
8. Завьялов П.О., Ижицкий А.С., Кириллин Г.Б., Хан В.М., Коновалов Б.В., Маккавеев П.Н., Пелевин В.В., Римский-Корсаков Н.А., Алымкулов С.А., Жумалиев К.М. Новые данные профилирования и швартовки помогают оценить изменчивость озера Иссык-Куль и выявить неизвестные особенности его термохалинного строения // Гидрол. Система Земли. наук. 2018. Т. 22. С. 6279-6295. EDN: LKFSWN
9. Коновалов Б.В., Кравчишина М.Д., Беляев Н.А., Новигатский А.Н. Определение содержания минеральной взвеси и взвешенного органического вещества по их спектральной принадлежности // Океанология. 2014. Т. 54, № 5. С. 704-711. EDN: STHKPZ
Выпуск
Другие статьи выпуска
Изучены характеристики грозового кучево-дождевого облака, из которого возник водяной смерч над Ладожским озером. Для исследования использованы результаты измерений метеорологического радиолокатора C-диапазона, грозопеленгационной системы и результаты высотного радиозондирования атмосферы. Анализ индексов конвективной неустойчивости показал малую и умеренную вероятность развития мощных конвективных процессов. Впервые применены алгоритмы классификации гидрометеоров и определения восходящих потоков по данным поляризационных характеристик, полученных радиолокатором ДМРЛ-С. С их помощью обнаружено появление крупных ледяных частиц в начале грозовой активности в облаке и зафиксирован протяженный восходящий воздушный поток, связанный со смерчем. Анализ зависимостей частоты молний от различных радиолокационных характеристик показал, что наиболее тесная корреляционная связь наблюдается с количеством крупных ледяных частиц, характеризуемым объемом переохлажденной части облака (выше изотермы 0 °C) с отражаемостью более 50 дБZ.
Разработана низкотемпературная вакуумная кювета длиной 17,5 см со сменными окнами из кварца, ZnSe и KBr для работы с Фурье-спектрометром высокого разрешения Bruker IFS 125M, обеспечивающая пороговую чувствительность к поглощению порядка 10-6 см-1. Кювета позволяет регистрировать спектры поглощения газов в области 1000-20000 см-1 в диапазоне температур от 108 до 298 К с погрешностью контроля температуры ± 0,1 К. В ходе испытаний кюветы Фурье-спектрометром IFS 125M зарегистрированы спектры поглощения 12CH4 в интервале от 9000 до 9200 см-1 со спектральным разрешением 0,03 см-1 при давлении 300 мбар и температурах 298 и 108 К. Эмпирические значения уровней энергии нижнего состояния переходов получены из отношений интенсивностей линий, измеренных при разных температурах.
Для региона Сибири (50-70° с. ш.; 60-110° в. д.) по данным приземных синоптических карт изучена многолетняя (1976-2018 гг.) изменчивость таких характеристик циклонов и антициклонов, как число, среднее многолетнее давление в центрах барических образований, средняя многолетняя продолжительность и траектории их движения. Установлено, что во вторую половину продолжительного периода увеличивается численность циклонов и антициклонов, наблюдается падение давления в центрах циклонов и его рост в центрах антициклонов. Можно сделать вывод, что в это время циклоны становятся более глубокими, а антициклоны - более интенсивными, в то время как их продолжительность воздействия; В течение года антициклональная погода наблюдалась над территорией Сибири чаще, чем циклоническая.
Проанализирована сезонная и долговременная изменчивость параметров энергетического баланса климатической системы Земли: альбедо и солнечной облученности. Показано, что параметрический резонанс климатической системы Земли с долгопериодными приливными колебаниями, а также деформации фотосферы Солнца под влиянием планет-гигантов и малые флуктуации солнечной постоянной могут привести к долговременным изменениям глобальной температуры, наблюдаемым с середины XIX в. Исследованы и физически обоснованы периоды медленных колебаний, приводящие к таким изменениям. Показано, что колебательная модель долговременных изменений глобальной температуры существенно эффективней трендовой, а также что случайные колебания, более чем на порядок уступающие наблюдаемым в эксперименте, с большой вероятностью могут сформировать кажущийся (диффузионный) тренд глобальной температуры, не уступающий предполагаемому в рамках антропогенной версии так называемого глобального потепления.
Работа посвящена принципу построения моделей оптических параметров вулканических облаков для применения в задачах дистанционного зондирования Земли из космоса. Построение моделей осуществлялось для широкого спектра различных вариаций магматических пород и их сочетаний с каплями воды, кристаллами льда и каплями водного раствора серной кислоты. В ходе работы рассмотрены следующие вопросы: принцип взаимодействия электромагнитного излучения с аэрозольными компонентами вулканического облака; смешивание аэрозольных компонентов вулканического облака между собой; использование оптических параметров для моделирования интенсивности излучения на верхней границе атмосферы. Установлено, что выбор модели напрямую влияет на результат получения массовых и микрофизических характеристик вулканического пепла.
По данным многолетних наблюдений на сети станций «МосЭкоМониторинг» рассчитаны эмиссии CO, NO, NO2, SO2, PM10 от городских источников, их пространственное распределение и временная изменчивость. Полученная эмиссионная матрица использована в химико-транспортной модели SILAM для оценки качества воздуха в Московском мегаполисе. По результатам сравнения расчетов с данными наблюдений, проведенных с применением корреляционных соотношений и критерия Стьюдента, выполнена коррекция эмиссионной матрицы. Для оптимизации пространственного распределения источников и величины эмиссий в Московском мегаполисе проведены вычисления полей примесей для летнего и зимнего месяцев по химико-транспортным моделям SILAM и COSMO-ART с использованием как рассчитанных, так и взятых из базы данных инвентаризации TNO эмиссий. Сопоставление результатов этих расчетов позволило снизить неопределенности оценки качества воздуха в Московском регионе.
Реконструкция волнового фронта оптического излучения, искаженного турбулентностью, выполняется на основе метода Гартмана аппроксимацией волновой функции полиномами Цернике по оценкам локальных наклонов и анализируется для высокоинтенсивных турбулентных искажений. С опорой на результаты статистического анализа информации о фазовых искажениях излучения по гартманограмме, сформированной в плоскости приемного устройства, представлен способ, позволяющий уменьшить остаточную ошибку реконструкции, обусловленную наличием высокоинтенсивных фазовых флуктуаций в распределении волнового фронта.
Сформулированы условия принадлежности функций к классу структурных для стационарных случайных процессов. В пространственной области это соответствует однородному и изотропному скалярному полю. Показано, что степенная функция является структурной лишь при показателе степени не больше единицы. Также показаны связь спектральных плотностей стационарных и случайных процессов со стационарными приращениями и осциллирующий характер поведения спектральной плотности стационарных процессов. Получены аналитические выражения для их описания с анализом точностных характеристик, рекомендованные для широкого практического использования.
Изучается зависимость изотропной поляризуемости α молекулы Н2О от переменной θ, описывающей изгибное колебание большой амплитуды в молекуле. Функция α(θ) выбрана в виде степенного ряда. Коэффициенты ряда подбирались из условия, чтобы матричные элементы <ψn|α(θ)|ψn> в базисе ангармонических волновых функций ψn(θ) совпадали со значениями поляризуемости α(n), найденными при анализе сдвигов линий поглощения молекулы в колебательных полосах n × ν2( n = 1-6) давлением азота, кислорода, воздуха и аргона. Для численного расчета волновых функций ψn (θ) использовалась потенциальная функция с низким барьером к линейной конфигурации молекулы. Проведен численный расчет вращательных вкладов в эффективную поляризуемость молекулы и дано сравнение полученного представления α(θ) с ab initio расчетами.
Представлены результаты измерений концентрации молекул Н2 в нанопорах образца аэрогеля (SiO2) диаметром ~20 нм, выполненных по стандартной газометрической методике. На основе полученных данных о концентрации молекул в объеме нанопор и об интегральной интенсивности индуцированной столкновениями полосы поглощения Н2 0-1 сделаны оценки сечения поглощения в максимуме полосы.
Издательство
- Издательство
- СО РАН
- Регион
- Россия, Новосибирск
- Почтовый адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- Юр. адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- ФИО
- Пармон Валентин Николаевич (ПРЕДСЕДАТЕЛЬ СО РАН)
- E-mail адрес
- sbras@sb-ras.ru
- Контактный телефон
- +7 (495) 9381848