Статьи в выпуске: 6
Рассматривается возможность применения метода магнитоупругого размагничивания (магнитоупругой памяти) ферромагнетиков для контроля механических напряжений протяженных стальных конструкций. Для этого исследовано магнитоупругое размагничивание пластинчатого образца больших размеров, предварительно локально намагниченного в виде полосы N-S, при его деформации простым изгибом. При этих условиях деформации листа по его длине будут чередоваться зоны растяжения и сжатия, а следовательно, локально намагниченная полоса стали по своей длине будет испытывать напряжения разного уровня и знака. Установлено, что наибольшее значение убыли δН напряженности магнитного поля рассеяния локальной остаточной намагниченности в виде полосы N-S имеют области стального листа в вершине изгиба, где напряжения растяжения не превышают 100 МПа. В остальных участках листа выявлено периодическое распределение δН меньшего уровня с длиной волны 20–30 см, что сопоставимо с размером половины его зоны с однотипными напряжениями, создаваемыми при изгибе. Проведена калибровка полученных результатов изменения δН по уровню испытываемых напряжений, и получено их распределение вдоль всей длины изгибаемого листа. Сделан вывод о применимости метода магнитоупругой памяти для контроля напряженного состояния протяженных стальных конструкций в режиме памяти.
Показано, что пластическое течение в твердых телах возникает локализованно на макроскопическом уровне ~10−2 м. Зоны локализованного пластического течения формируют картины локализованной деформации, представляющие собой проекцию автоволновых процессов пластического течения, развивающихся в объеме материала, на наблюдаемую по-верхность образца. В качестве источника информации о кинетике пластической деформации выбран метод спекл-фотографии. Общей особенностью локализованного пластического течения в твердых телах является упругопластический инвариант деформации, сочетающий типичные характеристики автоволн локализованного пластического течения с характеристиками упругих волн в кристаллической решетке. Инвариант определен почти для сорока раз-личных материалов (ОЦК-, ГЦК- и ГПУ-металлов и сплавов с решетками, щелочно-галоидных кристаллов, керамики и горных пород) в условиях активного растяжения и сжа-тия в интервале температур 143–420 К. С физической точки зрения обсуждается происхождение инварианта и его связь с другими физическими характеристиками кристаллической решетки, в частности с температурой Дебая. Выведены также многочисленные следствия упругопластического инварианта, позволяющие адекватно описывать закономерности пла-стического течения. Это, в свою очередь, позволяет рассматривать упругопластический ин-вариант деформирования как основное уравнение развивающегося в настоящее время автоволнового подхода к физической теории пластического деформирования.
В статье представлено семейство точных решений системы уравнений Навье – Стокса, используемой для описания неоднородных однонаправленных течений вязкой жидкости с учетом моментных напряжений. Несмотря на наличие только одной ненулевой компоненты вектора скорости, эта самая компонента зависит от времени и двух пространственных координат. Зависимость от третьей пространственной координаты отсутствует ввиду уравнения несжимаемости, являющегося частным случаем закона сохранения массы. Получающаяся переопределенная система уравнений рассматривается в нестационарной постановке. По-строение семейства точных решений полученной переопределенной системы начинается с анализа однородного решения типа Куэтта как наиболее простого в этом классе. Далее структура решения постепенно усложняется: профиль единственной ненулевой компоненты вектора скорости представлен в виде полинома, зависящего от одной переменной (горизонтальной координаты). Коэффициенты полинома функционально зависят от второй (верти-кальной) координаты и времени. Показано, что, ввиду сильной нелинейности и неоднородности исследуемого уравнения, сумма отдельных его решений не является решением. Также показано, что в линейно независимом базисе степенных функций горизонтальной координаты, определяющих вышеупомянутый полином, рассматриваемое уравнение распадается на цепочку простейших однородных и неоднородных уравнений в частных производных пара-болического типа. Данные уравнения интегрируются последовательно, порядок интегрирования отдельно описан. Результаты, изложенные в данной статье, обобщают ранее представ-ленное авторами семейство точных решений для описания однонаправленных нестационарных течений.
Работа посвящена вопросам численного моделирования аэродинамики профиля NACA 0012 при различных углах атаки. Рассмотрено два подхода к определению угла атаки: за счет изменения положения вектора скорости набегающего потока и за счет изменения относительного положения плоского аэродинамического профиля. Величина угла атаки варьируется в диапазоне от −5 до +10°. Численное моделирование проводилось с помощью пакета openFoam для решения задач механики сплошной среды в стационарной постановке на осно-ве конечных объемов с использованием решателя rhoSimpleFoam. В результате исследования были получены значения скорости потока и давления, частично определяемые методом зада-ния угла атаки. Показано существенное влияние метода задания угла атаки на расчетные аэродинамические коэффициенты. Дана оценка математической корректности и численной неоднозначности рассмотренных подходов. Сравнение коэффициентов сопротивления друг с другом в сочетании с качественным анализом полей физических величин показывает не-корректность определения угла атаки путем изменения положения вектора скорости набега-ющего потока.
Аналитически рассмотрены резонансные осесимметричные колебания цилиндрических дисков из изотропных материалов в соответствии с теорией Кога. Представлены в удобном для расчетов виде соотношения, связывающие безразмерные резонансные частоты с геометрическими размерами дисков и динамическими характеристиками материала (коэффициентом Пуассона и скоростью сдвиговых волн). Вычислены и сведены в таблицы цифровые значения безразмерных резонансных частот при разных коэффициентах Пуассона в пределах 0,20–0,45 с шагом 0.05 для ряда дискретных отношений толщины к диаметру дисков в пределах от 0 до 0,853145 и от 0 до 0,30 при возбуждении колебаний первой и второй форм соответственно. Оценка методических погрешностей расчетов резонансных частот на основе сравнения с известными результатами, полученными методом Рэлея – Ритца, доказала их высокую сходимость. Рассчитаны инструментальные погрешности определения динамических характеристик материала применительно к экспериментальным результатам, полученным в ряде известных работ.
В работе рассмотрен вопрос выбора оптимальных параметров работы диагностичской установки для двигателя внутреннего сгорания. Разработана методика и утверждена программа проведения лабораторного эксперимента. С применением метода математического планирования составлена план-матрица трехфакторного эксперимента 33. Объектами ис-следования выбраны пневматические клапаны, давление воздуха в пневматической системе и интервал подачи сжатого воздуха в градусах поворота коленчатого вала. В результате про-веденного эксперимента получены данные изменения угла поворота распределительного ва-ла после прекращения подачи воздуха в цилиндр ДВС в зависимости от изменения заданных параметров работы установки. Проведена статистическая обработка значений с расчетом не-обходимых величин среднего значения, дисперсии и коэффициента вариации. Проверка на достоверность полученных данных подтвердила воспроизводимость процесса. Полученные при проведении эксперимента результаты обработаны статистически с получением регрессионных уравнений. Построены трехмерные графики поверхностей и двухмерные графики зависимости угла поворота распределительного вала после прекращения подачи воздуха в цилиндр ДВС от значений варьируемых факторов. Выполненный анализ результатов лабораторного эксперимента позволяет определить наиболее рациональные конструкторские и технологические параметры работы диагностической установки для двигателя внутреннего сгорания. Определены параметры диагностической установки для двигателя внутреннего сгорания: сечение пневматического клапана от 29,5 до 34,5 мм2; давление в системе от 0,48 до 0,62 МПа; интервал подачи сжатого воздуха в градусах поворота коленчатого вала от 140 до 180°, обеспечивающий угол поворота распределительного вала от 95 до 110°.