Earlier we developed a stable fast numerical algorithm for solving ordinary differential equations of the first order. The method based on the Chebyshev collocation allows solving both initial value problems and problems with a fixed condition at an arbitrary point of the interval with equal success. The algorithm for solving the boundary value problem practically implements a single-pass analogue of the shooting method traditionally used in such cases. In this paper, we extend the developed algorithm to the class of linear ODEs of the second order. Active use of the method of integrating factors and the d’Alembert method allows us to reduce the method for solving second-order equations to a sequence of solutions of a pair of first-order equations. The general solution of the initial or boundary value problem for an inhomogeneous equation of the second order is represented as a sum of basic solutions with unknown constant coefficients. This approach ensures numerical stability, clarity, and simplicity of the algorithm.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.