При обработке поверхности CuCrZr-бронзы сканирующим пучком наносекундных лазерных импульсов с длиной волны излучения 355 нм выявлено образование структур в виде сфер диаметром около 500 нм, расположенных на ножках высотой до 1 мкм. Обнаружено влияние плотности энергии лазерного излучения и скорости сканирования лазерным пучком на формирование данных субмикронных структур. Показана возможность улучшения качества соединения металлических сплавов при диффузионной сварке за счет лазерной обработки поверхностей заготовок.
Экспериментально показана возможность модернизации аналоговых приборов с помощью контроллера Arduino Uno, на примере измерителя ИЛД-2М, который был апробирован в установке для измерения влияния плотности энергии импульсного лазерного излучения с длиной волны = 355 нм на коэффициент отражения различных материалов. Для калибровки использовался измеритель энергии лазерного излучения NOVA II, с помощью которого был найден коэффициент соответствия между энергией измеренной NOVA II и напряжением на выходе ИЛД-2М. Обозначены основные
проблемы, оказавшие влияние на необходимость усовершенствования аналогового оборудования. Модернизация позволила провести обработку результатов эксперимента с помощью современных компьютерных технологий.
Представлены экспериментальные результаты по формированию сварных соединений стекла и кремния при воздействии лазера с длительностью импульса 230 фс. Приведены результаты по измерению геометрии сварных швов соединения стекло-кремний. Установлено, что при увеличении скорости сварки от 30 до 70 мм/с увеличивается ширина сварного шва от 100 до 180 мкм, в то время как глубина сварного шва уменьшается от 100 до 80 мкм. Определено, что стабильное формирование соединения стекло-кремний образуется при энергии импульса в диапазоне от 10 до 17 мкДж. В ходе проведения работы исследована зона перехода стекло-кремний с помощью сканирующей электронной микроскопии (SEM). Определено, что в зоне перехода образуются прочные связи стекла и кремния в результате диффузии химических элементов обоих материалов.
На основе метода поверхностного плазмонного резонанса разработана методика из-
мерения толщины растущей металлической пленки порядка 0,1 мкм. В работе при-
менен метод численного моделирования и создание на его основе в среде LabView про-
граммы управления для контроля процесса роста металлической пленки по ее
оптическим параметрам. Показано, что метод является пригодным для его применения
при управлении процессом получения пленок с повторяющимися оптическими свой-
ствами. Возбуждая на поверхности пленки плазмон поляритонные волны и регистрируя
резонансное взаимодействие поверхностных плазмонов с поверхностной электромаг-
нитной волной, получают отклик в виде оптического сигнала. Анализ характеристик
резонансного отклика дает возможность корректировать ход процесса напыления