Архив статей

НОМОГРАММА ДЛЯ ПРОГНОЗИРОВАНИЯ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК У ДЕТЕЙ, РАЗРАБОТАННАЯ С ПОМОЩЬЮ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА (2025)
Выпуск: № 1 (2025)
Авторы: Седашкина Ольга Александровна, Колсанов Александр Владимирович

Актуальность. Современные алгоритмы искусственного интеллекта позволяют получать новые знания о потенциальных факторах риска и моделировать инструменты, прогнозирующие хроническое течение заболеваний почек у детей. Управление течением хронической болезни почек (ХБП) основано на использовании инструментов, помогающих врачу своевременно прогнозировать переход от острого заболевания почек к хроническому и своевременно направить ребенка к нефрологу.

Цель исследования: разработать графический инструмент, позволяющий прогнозировать хроническую болезнь почек у детей.

Материалы и методы. Исходными данными для разработки графического инструмента (номограммы) послужили собственные результаты, опубликованные ранее. Из полученных предикторов ХБП у детей (протеинурия, гематурия, полиморфный маркер С598Т гена IL4) построена прогностическая модель высокого качества (ROC-AUC>90%).

Результаты. Построенная номограмма обладает высокой прогностической ценностью – с точностью 98,9% прогнозировать ХБП у детей.

Заключение: Разработанную номограмму, можно использовать в качестве графического помощника врача для прогнозирования хронического течения заболевания у пациентов с острым заболеванием почек.

Сохранить в закладках
ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ТОЧНОСТИ ИДЕНТИФИКАЦИИ ЦЕФАЛОМЕТРИЧЕСКИХ ОРИЕНТИРОВ НА БОКОВЫХ ТЕЛЕРЕНТГЕНОГРАММАХ (2025)
Выпуск: № 1 (2025)
Авторы: Аюпова Ирина Олеговна, Колсанов Александр Владимирович, Попов Николай Владимирович, Хамадеева Альфия Минвалиевна, Давидюк Максим Андреевич, Кирюков Станислав Рэмович, Аюпов Олег Назибович

Цель. Оценить перспективность применения нейронных сетей для цефалометрического анализа при помощи анализа точности ручной иидентификации анатомических ориентиров на цифровых латеральных телерентгенограммах.

Материалы и методы. Выполнена разметка 100 обезличенных телерентгенограмм в боковой проекции одиннадцатью врачами- ортодонтами по 21 параметру, получено 23100 цифровых рентгеновских изображения с нанесенной на них опорной точкой. Проведено сравнение координат опорной точки с «базовой точкой», то есть усредненной координатой для каждой опорной точки среди всех ее локализаций.

Результаты. По критерию среднего отклонения от «базовой точки» наилучшая точность достигнута для вершин режущих краев центральных резцов верхней (is) (0,589, ДИ = 95%) и нижней челюстей (ii) (0,835, ДИ = 95%), а также для середины входа в турецкое седло (S) (0,662, ДИ = 95%).

Для группы ориентиров с наименьшей согласованностью, куда вошли такие точки как Po (4,330, ДИ = 95%), Pt (2,999, ДИ = 95%) и Ba (2,887, ДИ = 95%), для автоматизации идентификаций и повышения качества цефалометрического анализа, вероятно, будет недостаточным применение только искусственных нейронных сетей и потребуется внедрение других элементов машинного обучения.

Заключение. Учитывая результаты нашего исследования, можно сделать вывод, что предложенный метод демонстрирует высокую точность для большинства точек и может быть использован для автоматизации цефалометрического анализа с дальнейшим развитием технологий машинного обучения.

Сохранить в закладках
ПРЕДСТАВЛЕНИЕ МЕТРИК ДИАГНОСТИЧЕСКОЙ ТОЧНОСТИ В ЗАВИСИМОСТИ ОТ КЛАССИФИКАЦИИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ НА ОСНОВЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ОБЛАСТИ ЛУЧЕВОЙ ДИАГНОСТИКИ (2025)
Выпуск: № 1 (2025)
Авторы: Васильев Юрий Александрович, Памова Анастасия Петровна, Арзамасов Кирилл Михайлович, Владзимирский Антон Вячеславович, Зинченко Виктория Валерьевна, ЗАЮНЧКОВСКИЙ С.Ю.

Цель: настоящее исследование направлено на разработку клинической классификации программного обеспечения (ПО) на основе искусственного интеллекта (ИИ) в области лучевой диагностики.

Материалы и методы: для проведения исследования был проведён всесторонний анализ доступной информации о ПО на основе ИИ в сфере лучевой диагностики с использованием отечественных и зарубежных баз данных. В процессе анализа были выявлены ключевые аспекты, включая клиническую применимость ПО на основе ИИ, диагностическую точность медицинских изделий с использованием ИИ в лучевой диагностике.

Результаты: была разработана клиническая классификация ПО на основе ИИ в области лучевой диагностики. Кроме того, было выявлено важное замечание относительно представления метрик диагностической точности ПО на основе ИИ. В результате этого предложенная классификация была расширена и дополнена определением уровня представления метрик диагностической точности в зависимости от клинической классификации.

Заключение: на основе проведенного исследования разработана клиническая классификация ПО на основе ИИ, что обеспечивает единый подход к представлению данных о диагностической точности со стороны разработчиков. Данный подход позволяет повысить прозрачность и сравнимость информации о различных ПО на основе ИИ в медицинской практике, что способствует повышению эффективности и безопасности использования ПО на основе ИИ в медицинской практике. Результаты настоящего исследования имеют потенциал для масштабирования на другие области применения ИИ и могут быть использованы для совершенствования системы регулирования качества медицинских изделий с применением ИИ.

Сохранить в закладках
КОДЕКС ЭТИКИ ПРИМЕНЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В СФЕРЕ ОХРАНЫ ЗДОРОВЬЯ В РОССИЙСКОЙ ФЕДЕРАЦИИ (2025)
Выпуск: № 2 (2025)
Авторы: Королева Юлия Ивановна, ХОХЛОВ А.Л., АРТЕМОВА О.Р., КОСТИНА Е.В., Зарубина Татьяна Васильевна

В статье рассматривается процесс разработки и утверждения первого в Российской Федерации Кодекса этики применения искусственного интеллекта (ИИ) в сфере охраны здоровья. На фоне активного внедрения ИИ-технологий в медицинскую практику (зарегистрировано 39 соответствующих медицинских изделий) акцент сделан на важности формирования этических норм, обеспечивающих защиту прав пациентов, повышение доверия к технологиям и стандартизацию процессов. Проведен анализ международных подходов к этике ИИ в здравоохранении (ЕС, США, Великобритания, Канада, Австралия, Китай, Индия), и обозначена необходимость гармонизации отечественного кодекса с международными инициативами. Представлены этапы разработки документа, в которых приняли участие сотрудники профильных департаментов Минздрава России, главные внештатные специалисты и эксперты, а также структура и основные положения утвержденной версии Кодекса. Выделены ключевые принципы: прозрачность, конфиденциальность, справедливость, ограниченная автономность, контроль и ответственность. Финальная версия документа была опубликована в марте 2025 года на портале ЕГИСЗ после согласования с Межведомственной рабочей группой при Минздраве России. Кодекс призван стать фундаментом для устойчивого и безопасного внедрения ИИ в систему здравоохранения.

Сохранить в закладках
НЕЙРОСЕТЕВАЯ ГРАФОВАЯ АРХИТЕКТУРА ПРОЗРАЧНОГО ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В МЕДИЦИНЕ (2025)
Выпуск: № 2 (2025)
Авторы: АНДРИКОВ Д.А., Березкин Дмитрий Валерьевич, ПОПОВ А.Ю., Пролетарский Андрей Викторович

В статье представлен подход к созданию информационной системы на основе нейросетевой графовой архитектуры. Этот подход призван снивелировать проблему явного объяснения решений, принимаемых искусственным интеллектом — проблема прозрачности (объяснимости, надежности, доверенности). Использование технологий искусственного интеллекта в медицине носит «сквозной» характер и способствует созданию условий для улучшения эффективности и формирования принципиально новых направлений деятельности: автоматизации рутинных (повторяющихся) операций; использования автономного интеллектуального оборудования и робототехнических комплексов, интеллектуальных систем управления; повышения эффективности процессов планирования, прогнозирования и принятия врачебных решений. Перспективной технологией предлагаемого подхода является применение графовой нейросетевой архитектуры в составе информационной системы для обработки и анализа данных. В статье реализован пример классификации узлов графов на открытом датасете с кардиоданными условно-здоровых людей и пациентов.

Сохранить в закладках
ОЦЕНКА РЕЗУЛЬТАТИВНОСТИ СИСТЕМЫ ПОДДЕРЖКИ ПРИНЯТИЯ ВРАЧЕБНЫХ РЕШЕНИЙ ДЛЯ ПОСТАНОВКИ ПРЕДВАРИТЕЛЬНОГО ДИАГНОЗА В УСЛОВИЯХ КОНСУЛЬТАТИВНО-ДИАГНОСТИЧЕСКИХ ПОЛИКЛИНИК ГОРОДА МОСКВЫ (2025)
Выпуск: № 3 (2025)
Авторы: Васильев Юрий Александрович, КИРИНА М.В., БЕЗЫМЯННЫЙ А.С., БЛОХИНА Е.В., КАРАМОВ Б.И., АБРОСИМОВ А.С., Арзамасов Кирилл Михайлович, Памова Анастасия Петровна, Казаринова Вероника Евгеньевна

Внедрение системы поддержки принятия врачебных решений (СППВР) в клиническую практику требует тщательного контроля для обеспечения безопасности пациентов и оценки эффективности применения технологий искусственного интеллекта.

Целью данной работы является оценка результативности СППВР «ТОП-3» в условиях консультативно-диагностических поликлиник Департамента здравоохранения города Москвы.

Материалы и методы: Мониторинг работы СППВР «ТОП-3» проводился Департаментом здравоохранения города Москвы с 01.10.2020 по 21.03.2024 (n = 63 809 360 чел.). Рассчитывалась метрика Hit-3, на основе которой принималось решение о необходимости повторного обучения представленной СППВР. Дополнительно было проведено исследование с участием врачей-экспертов: ретроспективный анализ данных на выборке из 3000 пациентов с расчетом согласованности диагнозов от СППВР, врача и эксперта.

Результаты: По результатам мониторинга среднее значение Hit-3 составляло 63,5, 64,5 и 67,7 для первой, второй и третьей версии СППВР соответственно. Экспертиза показала, что в выборке несоответствия диагноза от врача и СППВР (n = 2000) в 80,2% случаев эксперт на основе жалоб соглашался с СППВР, в 11,5% случаях - с врачом, а в 8,3% случаев ставил иной диагноз. В выборке соответствия диагноза врача с одним из диагнозов СППВР (n = 1000) в 50,4% случаев эксперт соглашался с диагнозом от врача и СППВР, в 37,9% случаев – с одним из двух других альтернативных диагнозов СППВР, в 11,7% случаев ставил иной диагноз.

Заключение: Описанная методика мониторинга, дополненная проведением экспертизы, позволила всесторонне оценить внедряемую в систему здравоохранения СППВР. По итогу оценки результативности «ТОП-3» было принято решение о необходимости расширения анализируемого перечня данных электронных медицинских карт, что будет внедрено в следующей версии СППВР «ТОП-3+».

Сохранить в закладках