Актуальность. Современные алгоритмы искусственного интеллекта позволяют получать новые знания о потенциальных факторах риска и моделировать инструменты, прогнозирующие хроническое течение заболеваний почек у детей. Управление течением хронической болезни почек (ХБП) основано на использовании инструментов, помогающих врачу своевременно прогнозировать переход от острого заболевания почек к хроническому и своевременно направить ребенка к нефрологу.
Цель исследования: разработать графический инструмент, позволяющий прогнозировать хроническую болезнь почек у детей.
Материалы и методы. Исходными данными для разработки графического инструмента (номограммы) послужили собственные результаты, опубликованные ранее. Из полученных предикторов ХБП у детей (протеинурия, гематурия, полиморфный маркер С598Т гена IL4) построена прогностическая модель высокого качества (ROC-AUC>90%).
Результаты. Построенная номограмма обладает высокой прогностической ценностью – с точностью 98,9% прогнозировать ХБП у детей.
Заключение: Разработанную номограмму, можно использовать в качестве графического помощника врача для прогнозирования хронического течения заболевания у пациентов с острым заболеванием почек.
Цель. Оценить перспективность применения нейронных сетей для цефалометрического анализа при помощи анализа точности ручной иидентификации анатомических ориентиров на цифровых латеральных телерентгенограммах.
Материалы и методы. Выполнена разметка 100 обезличенных телерентгенограмм в боковой проекции одиннадцатью врачами- ортодонтами по 21 параметру, получено 23100 цифровых рентгеновских изображения с нанесенной на них опорной точкой. Проведено сравнение координат опорной точки с «базовой точкой», то есть усредненной координатой для каждой опорной точки среди всех ее локализаций.
Результаты. По критерию среднего отклонения от «базовой точки» наилучшая точность достигнута для вершин режущих краев центральных резцов верхней (is) (0,589, ДИ = 95%) и нижней челюстей (ii) (0,835, ДИ = 95%), а также для середины входа в турецкое седло (S) (0,662, ДИ = 95%).
Для группы ориентиров с наименьшей согласованностью, куда вошли такие точки как Po (4,330, ДИ = 95%), Pt (2,999, ДИ = 95%) и Ba (2,887, ДИ = 95%), для автоматизации идентификаций и повышения качества цефалометрического анализа, вероятно, будет недостаточным применение только искусственных нейронных сетей и потребуется внедрение других элементов машинного обучения.
Заключение. Учитывая результаты нашего исследования, можно сделать вывод, что предложенный метод демонстрирует высокую точность для большинства точек и может быть использован для автоматизации цефалометрического анализа с дальнейшим развитием технологий машинного обучения.
Цель: настоящее исследование направлено на разработку клинической классификации программного обеспечения (ПО) на основе искусственного интеллекта (ИИ) в области лучевой диагностики.
Материалы и методы: для проведения исследования был проведён всесторонний анализ доступной информации о ПО на основе ИИ в сфере лучевой диагностики с использованием отечественных и зарубежных баз данных. В процессе анализа были выявлены ключевые аспекты, включая клиническую применимость ПО на основе ИИ, диагностическую точность медицинских изделий с использованием ИИ в лучевой диагностике.
Результаты: была разработана клиническая классификация ПО на основе ИИ в области лучевой диагностики. Кроме того, было выявлено важное замечание относительно представления метрик диагностической точности ПО на основе ИИ. В результате этого предложенная классификация была расширена и дополнена определением уровня представления метрик диагностической точности в зависимости от клинической классификации.
Заключение: на основе проведенного исследования разработана клиническая классификация ПО на основе ИИ, что обеспечивает единый подход к представлению данных о диагностической точности со стороны разработчиков. Данный подход позволяет повысить прозрачность и сравнимость информации о различных ПО на основе ИИ в медицинской практике, что способствует повышению эффективности и безопасности использования ПО на основе ИИ в медицинской практике. Результаты настоящего исследования имеют потенциал для масштабирования на другие области применения ИИ и могут быть использованы для совершенствования системы регулирования качества медицинских изделий с применением ИИ.
В настоящее время искусственный интеллект является одной из наиболее быстро развивающихся областей человеческого знания. Данная тематика имеет большое значение для науки и практики, в целом, и для медицины, в частности. Применение технологий искусственного интеллекта к сегментации зон головного мозга и выявлению аномальных участков особенно востребовано и перспективно в области нейрофизиологии, нейрохирургии, психиатрии, клинической психологии и других медицинских дисциплин. В данной работе проведено исследование существующих методов автоматизированной сегментации и анализа данных о структуре и функциональном состоянии головного мозга, а также метрик, применяемых для оценки эффективности данного подхода.
Цель: выявление нерешённых проблем и поиск тенденций в разработке методов сегментации и выявления аномальных участков головного мозга, а также определение наиболее эффективных методов и способов их улучшения.
Материалы и методы. Работа выполнена с использованием методологии Systematic Mapping Study (SMS). Данное исследование ограничивается предметной областью, связанной с сегментацией зон головного мозга и определением в нём аномальных участков.
Результаты. Основные результаты исследования представлены в виде классификационных таблиц и ментальной карты. Показано, что целью рассмотренных исследований является повышение точности при сегментировании зон головного мозга и нахождении аномальных участков. Такая метрика, как время обработки данных, применяется для оценки эффективности метода при малом количестве исследований, а в большинстве случаев вообще не рассматривается. При этом скорость обработки изображений в зависимости от применяемого метода измеряется минутами, что существенно ограничивает возможность использования данного подхода в экстренных ситуациях, в том числе при угрозе жизни человека.
Заключение. Для анализа данных о структуре и функциональном состоянии головного мозга в режиме реального времени требуется модификация уже разработанных методов энцефальной сегментации, а также разработка новых, более эффективных подходов. При этом скорость обработки данных должна быть соизмерима со временем вынесения срочного заключения о состоянии головного мозга человека.
Актуальность. Необходимость эффективного управления здравоохранением требует совершенствования медицинской статистики. Текущие методы сбора данных ограничены и неточны. Стратегия цифровой трансформации до 2030 года нацелена на создание безопасной и надежной информационной инфраструктуры здравоохранения с использованием отечественных технологий.
Цель исследования: провести анализ существующих методов сбора и анализа медицинской статистики в различных странах.
Материалы и методы. Для получения информации выполнен поиск релевантных исследований, опубликованных в электронных базах eLibrary, Refseek, Virtual Learning Resources Center, Yandex и Googlе. Стратегию поиска составляли такие ключевые слова и словосочетания на русском и английском языках, как «статистика», «сбор», «анализ».
Результаты. Исследование выявило ключевые методы развития сбора медицинской статистики в России и мире, фокусируясь на точности и полноте данных. Анализировались принципы конфиденциальности, охвата, качества, вычислимости, регулярности и репрезентативности, а также методы сбора: опросы, непрерывный сбор данных и автоматизированная передача информации.
Выводы. Уникальность российской системы статистического учета в здравоохранении заключается в сплошной регистрации каждого случая заболевания в медицинских организациях. Внедрение современных цифровых решений, основанных на первичных данных, соответствует основным принципам статистики. Это позволит упростить работу с информацией, повысить ее точность и доступность для оперативного реагирования на изменения в сфере здравоохранения.
Анализу подвергнуты данные литературы, представленные в открытых медицинских источниках, об использовании возможностей телемедицины в гематологии. Телемедицинская поддержка представляет собой эффективный способ ведения и мониторинга пациентов с целью минимизации визитов в лечебные учреждения в тех случаях, когда этого можно избежать. Изучены опыт и перспективы данного вида взаимодействия с точки зрения удовлетворенности пациентов и эффективности мониторинга различных гематологических заболеваний. Несмотря на малое количество результатов с высокой доказательностью, проведенные исследования демонстрируют оптимистичную картину использования телемедицины в реальной клинической практике, что ведет к необходимости более масштабных и качественных исследований для внедрения различных форм телемониторинга в рутинное наблюдение за гематологическими пациентами.
Использование квантовых технологий открывает новые возможности для разработки лекарственных средств, улучшения качества диагностики, защиты медицинской информации и персональных данных, повышения эффективности принятия врачебных решений. Целью исследования являлось изучение перспектив развития и применения квантовых технологий в сфере здравоохранения. Для достижения цели выполнен анализ отдельных кластеров квантовых технологий, имеющих максимальные перспективы коммерческого применения в здравоохранении; построен патентный ландшафт рассматриваемой технологической области; подготовлен обзор созданных на основе квантовых технологий рыночных продуктов для здравоохранения. Показано, что максимальное развитие в сфере здравоохранения получили квантовые сенсоры, квантовые вычисления и квантово-устойчивые решения кибербезопасности. Количество созданных технических решений в рассматриваемой технологической области, получивших патентную охрану, составляет более 6,5 тысяч, из которых 3,5 тысячи поддерживаются.
В качестве ключевых бенефициаров использования квантовых технологий в здравоохранении предлагается рассматривать, прежде всего, фармацевтические компании и биотехнологические стартапы, которые могут сократить время моделирования и тестирования лекарств, повысить точность прогнозирования побочных эффектов лекарственных средств и взаимодействия лекарственных препаратов за счет использования квантовых вычислений, ускорить анализ больших данных и оптимизировать протоколы клинических исследований.
В статье рассматривается процесс разработки и утверждения первого в Российской Федерации Кодекса этики применения искусственного интеллекта (ИИ) в сфере охраны здоровья. На фоне активного внедрения ИИ-технологий в медицинскую практику (зарегистрировано 39 соответствующих медицинских изделий) акцент сделан на важности формирования этических норм, обеспечивающих защиту прав пациентов, повышение доверия к технологиям и стандартизацию процессов. Проведен анализ международных подходов к этике ИИ в здравоохранении (ЕС, США, Великобритания, Канада, Австралия, Китай, Индия), и обозначена необходимость гармонизации отечественного кодекса с международными инициативами. Представлены этапы разработки документа, в которых приняли участие сотрудники профильных департаментов Минздрава России, главные внештатные специалисты и эксперты, а также структура и основные положения утвержденной версии Кодекса. Выделены ключевые принципы: прозрачность, конфиденциальность, справедливость, ограниченная автономность, контроль и ответственность. Финальная версия документа была опубликована в марте 2025 года на портале ЕГИСЗ после согласования с Межведомственной рабочей группой при Минздраве России. Кодекс призван стать фундаментом для устойчивого и безопасного внедрения ИИ в систему здравоохранения.
Работа посвящена оценке соответствия нейрофизиологических и субъективных признаков моторного воображения в контексте нейрореабилитации с использованием интерфейсов мозг–компьютер (ИМК) и выполнена в рамках разработки программно-аппаратного комплекса (ПАК) для восстановления когнитивных и моторных функций верхних конечностей при лёгких и выраженных нарушениях.
Материалы и методы: В исследовании приняли участие 24 здоровых добровольца. Электроэнцефалограмма регистрировалась при выполнении заданий на моторное воображение с различными визуальными стимулами. Анализ включал расчёт сенсомоторной десинхронизации (ERD), классификацию с использованием пространственных фильтров и линейного дискриминантного анализа, а также оценку корреляции с субъективными самооценками.
Результаты: Латеральность воображаемого движения оказала значимое влияние на выраженность ERD. Субъективная уверенность участников не коррелировала ни с нейрофизиологическими показателями, ни с уверенностью классификатора при распознавании воображаемого движения. При этом модели продемонстрировали высокую точность классификации моторных представлений.
Выводы: Выявленное несоответствие между субъективной и объективной оценкой подчеркивает необходимость внедрения биологической обратной связи и персонализированных ИМК в составе ПАК для повышения эффективности нейрореабилитации.
В статье представлен подход к созданию информационной системы на основе нейросетевой графовой архитектуры. Этот подход призван снивелировать проблему явного объяснения решений, принимаемых искусственным интеллектом — проблема прозрачности (объяснимости, надежности, доверенности). Использование технологий искусственного интеллекта в медицине носит «сквозной» характер и способствует созданию условий для улучшения эффективности и формирования принципиально новых направлений деятельности: автоматизации рутинных (повторяющихся) операций; использования автономного интеллектуального оборудования и робототехнических комплексов, интеллектуальных систем управления; повышения эффективности процессов планирования, прогнозирования и принятия врачебных решений. Перспективной технологией предлагаемого подхода является применение графовой нейросетевой архитектуры в составе информационной системы для обработки и анализа данных. В статье реализован пример классификации узлов графов на открытом датасете с кардиоданными условно-здоровых людей и пациентов.
В статье представлено проектирование базы данных, предназначенной для оптимизации хранения и обработки медицинских данных, с акцентом на поддержку принятия решений в области интенсивной терапии и реанимации. Целью исследования является разработка логической модели базы данных на основе передовых принципов и методов, используемых в международных проектах открытых баз данных, способной минимизировать ошибки, связанные с человеческим фактором, и улучшить точность прогноза состояния пациентов в реальном времени.
Методология работы основана на сравнительном анализе существующих международных медицинских баз данных, таких как MIMIC-IV и eICU. Для проектирования новой базы данных применен инновационный модульный подход, который обеспечивает гибкость и масштабируемость системы.
Основные результаты работы заключаются в создании логической модели базы данных, которая может быть эффективно использована в российской системе здравоохранения, в том числе в удаленных и малоресурсных регионах. Логическая модель разработана с учётом специфики медицинских данных, включая модули для хранения информации о госпитализациях, показателях состояния пациентов, лабораторных исследованиях, медикаментозных назначениях и других аспектах клинической практики. Важной частью исследования является интеграция базы данных с российскими медицинскими информационными системами и адаптация к национальным стандартам и нормативным требованиям.
Созданная архитектура логической модели минимизирует влияние человеческого фактора, автоматизирует анализ данных и может использоваться в разработке систем поддержки принятия врачебных решений. Практическая значимость заключается в повышении качества медицинской помощи и снижении нагрузки на персонал. Система применима в российских учреждениях, включая удаленные регионы, и способствует цифровизации здравоохранения.
Рассмотрены требования к обезличенным данным реальной клинической практики (ДРКП), основные методы обезличивания и синтетизации ДРКП, позволяющие сохранить их клиническую информативность. Приведено описание процедуры сбора, обезличивания и использования ДРКП, которая обеспечивает высокую стойкость обезличенных данных относительно угроз нарушения конфиденциальности сведений, составляющих врачебную тайну.
- 1
- 2