Из решения уравнения непрерывности для одномерной модели р–n-перехода с граничными условиями, определяющими поведение концентрации неосновных носителей заряда и тока на границах раздела областей р- и n-типа проводимости, получена зависимость произведения R0A от длины волны и температуры. Проведено сравнение влияния характерных для материала HgCdTe механизмов рекомбинации (излучательной, поверхностной, Оже, Шокли-Рида-Холла), на параметры фотодиодов. Показано, что параметры фотодиодов в большей степени зависят от механизмов рекомбинации Оже и ШРХ, при этом рекомбинация ШРХ в области объемного заряда дополнительно уменьшает произведение R0A более чем в 3 раза по сравнению с рекомбинацией Оже, а поверхностная рекомбинация на границе раздела области поглощения уменьшает произведение R0A на 1,5 порядка. Предложены рекомендации по улучшению технологии изготовления фотодиодов на основе HgCdTe, которые заключаются в усложнении архитектуры фоточувствительного элемента (ФЧЭ) и улучшение качества границ раздела между слоями.
Рассмотрены основные механизмы Оже-рекомбинации и рассчитаны скорости генерациирекомбинации и времена жизни в зависимости от состава и температуры в материале HgCdTe р- и n-типа проводимости на основе модели Битти–Ландсберга–Блэкмора (Beattie– Landsberg–Blakemore (BLB). Определены пороговые значения энергии, требуемые для процессов рекомбинации по механизмам Оже-1, Оже-7 и Оже-3. Проведена оценка темновых токов и обнаружительной способности в узкозонных полупроводниковых структурах HgCdTe с учетом фундаментальных Оже-механизмов.
Тройные и четверные растворы материалов группы А3В5 арсенидов InGaAs и фосфидов InGaAsР используются в современных приборах коротковолнового ИК-диапазона спектра различного назначения. Проведены оценки и моделирование времени жизни в структурах А3В5 в соответствии с тремя основополагающими механизмами генерации-рекомбинации: излучательным, Оже и Шокли-Рида-Холла. По про-веденным оценкам время жизни в материале In0,53Ga0,47As n-типа проводимости в диапазоне концентраций 1013–1017 см-3 составляет от 10-5 до 4,510-4 с, что позволяет достигать высоких фотоэлектрических параметров.
Экспериментально исследована структура свечения микроплазменного разряда, инициируемого в вакууме импульсным потоком внешней плазмы на поверхности титанового образца, покрытого естественной сплошной оксидной пленкой толщиной 2–6 нм. При воздействии плазмы с плотностью около 1013 см–3 и электронной температурой 10 эВ на поверхность образца, с отрицательным потенциалом 400 В относительно потенциала плазмы, внешняя поверхность оксидной пленки приобретает положительный электрический заряд в результате потока ионов из плазмы. При этом внутри диэлектрической пленки возникает сильное электрическое поле около 4 МВ/см. Электрический пробой между заряженной поверхностью пленки и металлом инициирует возбуждение микроплазменного разряда на поверхности титана. Интегральное свечение микроплазменного разряда в макромасштабе представляет собой разветвленную структуру типа дендрита, которая в микромасштабе состоит из большого количества ярко светящихся «точечных» образований – локализованных на поверхности металла катодных пятен и свечения ореола вокруг них. С помощью высокоскоростного фоторегистратора IMACON-468 исследован фрагмент поверхности титана площадью 0,50,4 мм2 в области свечения катодных пятен. На основе анализа оптического свечения катодных пятен на 7 последовательных кадрах фоторегистратора с экспозицией каждого кадра 100 нс и интервалом между кадрами 400 нс рассчитано ожидаемое «время жизни» катодных пятен в интервале значений 0,50,2 мкс. По пространственному распределению свечения микроразрядов определено, что средний диаметр катодных пятен составляет величину около 164 мкм, при этом средний размер светящегося ореола вокруг отдельного катодного пятна достигает значения 100 мкм.