Рассматривается задача о деформировании под действием равномерного давления круговой пластины, сопряженной с массивным основанием, при этом условие сопряжения пластины с основанием моделируется использованием граничных условий типа обобщенной упругой заделки, т. е. связи изгибающего момента и усилий на краю пластины со смещениями и углом поворота посредством матрицы податливости. Основной целью работы является исследование влияния упругости заделки на упругий отклик пластины. Решение задачи получено в постановке линейной теории пластин, теории мембран в приближении однородности продольных усилий и теории Феппля - фон Кармана, также в приближении предположения однородности продольных усилий. Значения коэффициентов матрицы податливости получены с помощью метода конечных элементов для вспомогательной задачи и сравнены со значениями коэффициентов, полученных для близких задач аналитическими методами. Численные результаты получены для пластины из алюминия на кремниевом основании. Проведено сравнение полученного решения с решением, полученным для условия жесткой заделки для всех трех использованных моделей. Показано, что в случае больших прогибов (несколько толщин пластины) учет податливости заделки становится существенным.
Рассматриваются вопросы моделирования процессов самоорганизации и само сборки в сложных наноэлектромеханических системах (НЭМС) с бинарно-сопряженными функциональными элементами подсистемам и исследуется возникновение в них эф-фекта самоорганизации. На базе предложенных принципов моделирования устанавливается возможность создания изделий НЭМС с совмещением действующих гармонично технических и природных функциональных элементов (например, сложных многоэлементных систем нелинейно связанных разноструктурных молекулярных моторов).
В работе предложен новый обобщенный подход обобщенного физико-математического и компьютерного моделирования динамических и энергетических характеристик микро- и наноэлектромеханических систем (МЭМС и НЭМС), как сложных динамических систем с бинарно-сопряженными подсистемами. На базе предложенных теоретических принципов и моделей рассматриваются возможности исследования электрофизических характеристик биологических наноструктур. Рассматриваются некоторые узловые вопросы перспективного развития МЭМС и НЭМС, если в структурах их функциональных элементов возбуждения имеются активные наноструктурированные материалы дуального назначения, в которых при отсутствии внешних электромагнитных полей наблюдаются и намагниченность, и электрическая поляризация, так называемые сегнетоэлектромагнетики.