Изучены культуры 1Б класса бонитета полнотой 0.95 на площади 0.64 га, созданные на вырубке по схеме 1.82 × 1.10 м. На план наносили живые и отпавшие деревья и площади их питания в программе “ArcMap-ArcView”. Территорию разделили на 9 секций, с густотой 76–122% от среднего по насаждению. Доставшаяся деревьям в возрасте 30 лет площадь питания повлияла на диаметр ствола в 55 лет в редких местах древостоя с силой 13.3%, а в густых местах – с силой 5.0%. То есть подтвердилась гипотеза, что влияние площади питания дерева на диаметр ствола может быть слабым также и в среднем возрасте насаждений, и уровень его влияния зависит от густоты древостоя. Отпад деревьев к 55 годам коррелировал с частотой в классах площади питания (r = 0.96 ± 0.03), поэтому площадь питания менее среднего значения повышала вероятность отпада дерева к 55 годам всего лишь на 7%. Выдвинуто предположение, что снижение влияния площади питания при высокой густоте происходит из-за усиления кооперации деревьев. При имитационном разреживании культур, с увеличением площади питания у оставляемых деревьев в 2 раза было получено соответствующее увеличение диаметра только у 11% деревьев. Остальные 89% деревьев не воспользовались доставшейся им большей площадью питания и не увеличили свои размеры, несмотря на 25 лет развития при более свободном стоянии. Это указывает на то, что в культурах второго класса возраста увеличение площади питания деревьев уже не приводит к улучшению их развития в подавляющем числе случаев. Поэтому густоту следует снижать в намного более раннем возрасте, например, в 10–15 лет
Идентификаторы и классификаторы
- SCI
- Биология
К настоящему времени получили развитие исследования, где рост деревьев изучают в многофакторных пространственных моделях (Стороженко, 2007; Колобов, 2014; Грабарник, Секретенко, 2015) с анализом волновых процессов смены поколений и структуры насаждений на фоне внешних и внутренних факторов (Гавриков, 2013; Усольцев, 2013), а также взаимодействие деревьев в биогруппах и микроценозах (Вайс, 2014; Рогозин, 2019). Также были начаты, но, к сожалению, не продолжены исследования еженедельной динамики прироста у соседствующих деревьев в девственных лесах (Горячев, 1999). Эти исследования в конечном счете формируют теоретические основы современного лесоводства, в котором должны соединиться “теория лесообразовательного процесса”, “популяционная биология” и “теоретическая экология”, частью которой является и недавно возникшая “лесная биогеофизика” (Тихонова, 2020)
Список литературы
1. Анучин H.H. Лесная таксация. М.: Лесная промышленность, 1982. 552 с.
2. Баландин Р.К. Анти-Дарвин. Миражи эволюции. М.: Яуза, Эксмо, 2010. 350 с.
3. Борисов А.Н., Иванов В.В., Екимов Е.В. Метод оценки пространственного распределения ресурса в экологической нише // Сибирский лесной журн. 2014. № 5. С. 113–121. EDN: TDQEZR
4. Вайс А.А. Научные основы оценки горизонтальной структуры древостоев для повышения их устойчивости и продуктивности (на примере насаждений Западной и Восточной Сибири): автореф. дис. …д-ра с.-х. наук: 06.03.02. Красноярск, 2014. 33 с. EDN: ZPFZDV
5. Гавриков В.Л. Рост леса: уровни описания и моделирования. Красноярск: Сибирский Федеральный Университет, 2013.176 с.
6. Голиков А.М. Эколого–диссимметрийный и изоферментный анализ структуры модельных популяций сосны обыкновенной // Лесоведение. 2011. № 5. С. 46–51. EDN: OFUYNX
7. Голиков А.М. Эколого-диссимметрический подход в генетике и селекции видов хвойных. LAP LAMBERT Academic Publishing, 2014. 162 с.
8. Горячев В.М. Влияние пространственного размещения деревьев в сообществе на формирование годичного слоя древесины хвойных в южнотаежных лесах Урала // Экология. 1999. № 1. С. 9–19. EDN: XKSQGC
9. Грабарник П.Я., Секретенко О.П. Анализ горизонтальной структуры древостоев методами случайных точечных полей // Сибирский лесной журн. 2015. № 3. С. 32–44. EDN: UBVULL
10. Демаков Ю.П. Структура и закономерности развития лесов республики Марий Эл. Йошкар-Ола: Поволжский государственный технологический университет, 2018. 432 с.
11. Ипатов В.С., Тархова Т.Н. Количественный анализ ценотических эффектов в размещении деревьев по территории // Ботанический журн. 1975. Т. 60. № 9. С. 1237–1250.
12. Карабаева А.Г. Нарратив в науке и образовании // Серия “Symposium”. Инновации и образование. Выпуск 29. Сборник материалов конференции. Санкт-Петербург: Санкт-Петербургское философское общество, 2003. С. 89-96.
13. Колобов А.Н. Моделирование пространственно-временной динамики древесных сообществ: индивидуально-ориентированный подход // Лесоведение. 2014. № 5. С. 72–82. EDN: SQBXBF
14. Костерин О.Э. Дарвинизм как частный случай “бритвы Оккама” // Вестник ВОГиС. 2007. Т. 11. № 2. С. 416–431. EDN: HGVVZQ
15. Кузьмичев В.В. Закономерности динамики древостоев. Новосибирск: Наука, 2013. 208 с.
16. Мартынов А.Н. Зависимость биометрических показателей сосны от площади питания // Лесоведение. 1976. № 5. С. 85–88.
17. Марченко И.С. Биополе лесных экосистем. Брянск: БГИТА,1995. 188 с.
18. Маслаков Е.Л. Формирование сосновых молодняков. М.: Лесная промышленность, 1984. 168 с.
19. Маслаков Е.Л. Генезис и динамика социальных структур сосны в фазе индивидуального роста // Таежные леса на пороге XXI в. СПб.: Санкт-Петербургский научно-исследовательский институт лесного хозяйства, 1999. С. 42-51.
20. Мерзленко М.Д., Бабич Н.А. Теория и практика искусственного лесовосстановления: учебное пособие. Архангельск: САФУ, 2011. 239 с.
21. Нагимов З.Я. Закономерности роста и формирования надземной фитомассы сосновых древостоев: дис. … д-ра с.-х. наук: 06.03.02. Екатеринбург: УГЛА, 2000. 409 с. EDN: QDGMWP
22. Плантационное лесоводство / Под ред. И. В. Шутова. СПб.: СПбГПУ, 2007. 366 с.
23. Правила ухода за лесами. М.: МПР РФ. Приказ № 626 от 22.11.2017.
24. Прокопьев М.Н. Культуры сосны в таежной зоне. М.: Лесная промышленность, 1981.136 с.
25. Разин Г.С. Эскизы таблиц хода роста древостоев (сосны, ели, березы и осины) с полнотой 1.0 по бонитетам // Основные положения организации и развития лесного хозяйства Пермской области. Гослескомитет СССР. В/О “Леспроект”. Пермь, 1977. С. 437–455.
26. Разин Г.С. Динамика сомкнутости одноярусных древостоев // Лесоведение. 1979. № 1. С. 23–25.
27. Рогозин М.В. Фантомы теорий рубок ухода // Бюллетень науки и практики. 2017. № 4(17). С. 48-55. DOI: 10.5281/zenodo.546284 EDN: YKVRCZ
28. Рогозин М.В. Структура древостоев: конкуренция или партнерство? [Электронный ресурс]. Пермь: ПГНИУ. 2019. 223 с. http://www.psu.ru/nauka/elektronnye-publikatsii/monografii-123123/rogozin-m-v-struktura-drevostoev-konkurentsiya-ili-partnerstvo.
29. Рогозин М.В., Разин Г.С. Развитие древостоев. Модели, законы, гипотезы [Электронный ресурс]: монография. Пермь: ПГНИУ, 2015. 277 с. URL: http://k.psu.ru/library/ node/299086; http://elibrary.ru/item.asp?id=24420793. EDN: UOKKIR
30. Санников С.Н., Санникова Н.С. Лес как подземно-сомкнутая дендроценоэкосистема // Сибирский лесной журн. 2014. № 1. С. 25–34. EDN: SLRSRD
31. Сеннов С.Н. Уход за лесом: экологические основы. М.: Лесная промышленность, 1984. 127 с.
32. Сеннов С.Н. Итоги 60-летних наблюдений за естественной динамикой леса // СПб.: СПбНИИЛХ, 1999. 98 с.
33. Стороженко В.Г. Устойчивые лесные сообщества: (теория и эксперимент). М.: Институт лесоведения РАН, 2007. 190 с.
34. Терехов Г.Г, Усольцев В.А. Формирование, рост и биопродуктивность опытных культур ели сибирской на Урале: Исследование системы связей и закономерностей. Екатеринбург: УрО РАН, 2008. 215 с. EDN: SOIMJN
35. Терехов Г.Г., Усольцев В.А. Морфоструктура насаждений и корненасыщенность ризосферы культур ели сибирской и вторичного лиственного древостоя на Среднем Урале как характеристика их конкурентных отношений // Хвойные бореальной зоны. 2010. Т. XXVIII. № 3–4. С. 1–7. EDN: OKHPGR
36. Тихонова И.В. Четыре опоры к фундаменту современного устойчивого лесоводства // Лесные экосистемы: современные вызовы, состояние, продуктивность и устойчивость. Материалы междунар. научно-практ. конф., посвященной 90-летию Института леса НАН Беларуси (Гомель, 13-15 ноября 2020 г.). Гомель: Институт леса НАН Беларуси. 2020. С. 97-101.
37. Тябера А.П. Площадь роста дерева и ее определение аналитическим способом // Лесной журн. 1978, № 2. С. 12-16.
38. Усольцев В.А. Продукционные показатели и конкурентные отношения деревьев. Исследование зависимостей. Екатеринбург: УГЛТУ, 2013. 556 с.
39. Усольцев В.А., Часовских В.П., Акчурина Г.А., Осмирко А.А., Кох Е.В. Фитомасса деревьев в конкурентных условиях: исследование системных связей средствами информационных технологий. Екатеринбург: УГЛТУ, 2018. 526 с.
40. Чирков Г.В. Закономерности формирования древесного отпада в хвойных древостоях Ленинградской области: автореф. дис. … к. с.-х. наук: 06.03.02. СПб. 2004. 24 с. EDN: NHVIPP
41. Эйтинген Г.Р. Рубки ухода за лесом в новом освещении. М., 1934. 224 с.
Выпуск
Другие статьи выпуска
В статье приведен анализ исторических данных по организации и состоянию геоэкологических исследований в горных лесах России и Северного Кавказа. На примере регионального мониторинга горных лесных экосистем показана организация многоцелевого природопользования в пределах горных водосборных бассейнов. По результатам экспериментального материала, полученного многолетним мониторингом на комплексных лесогидрологических стационарах с постановкой активных экспериментов, даны рекомендации по лесопользованию в горах. Показан пример получения информации экспедиционными методами, а также компьютерное моделирование лесохозяйственного освоения в условиях горных регионов. Предложены научные принципы и экологические основы ведения хозяйства в лесах горных регионов страны
Опасность массовых размножений стволовых вредителей в Ленинградской области и Республике Карелии возрастает. Однако данные по состоянию их популяций на северо-западе европейской части России немногочисленны и весьма разнородны. Они включают материалы статей и обзоров санитарного и лесопатологического состояния, которые, в свою очередь, основываются на совершенно разных методических подходах к получению информации. Обобщение и анализ данных по увеличению численности стволовых вредителей, представляющих опасность для хвойных древостоев северо-запада европейской части России, с учетом материалов научных отчетов и лесопатологического мониторинга – актуальная задача данной работы. Наибольшую опасность для еловых древостоев представляет короед-типограф Ips typographus (Linnaeus, 1758), формирующий масштабные очаги массового размножения. Основные факторы, обуславливающие начало формирования очагов размножения, – погодные условия (ураганные ветры и образование ветровалов, увеличение температуры в течение вегетационного сезона и недостаток осадков). В конце XX–начале XXI в. частоты вспышек массовых размножений стволовых вредителей, в особенности короеда-типографа, в Ленинградской области увеличились. Начиная со второй половины XX в., отмечаются вспышки размножения в Республике Карелии. В Мурманской области стволовые вредители не оказывают заметного влияния на состояние древостоев. Эти тенденции соответствуют тренду увеличения температуры в Ленинградской области и Карелии и несущественному изменению температуры в Мурманской области. Дополнительное питание сосновых лубоедов и черных усачей в случаях их массового размножения – недооцененный фактор ослабления древостоев, который существенно влияет на прирост и состояние окружающих насаждений. Появление инвазивных видов, таких как союзный короед Ips amitinus (Eichhoff, 1872) (Curculionidae: Coleoptera), представляет потенциальную опасность, однако в настоящее время в сосновых и еловых лесах на севере европейской части России этот вид не проявляет существенной активности
Изучались торфянистые подстилки мохово-древесного состава в насаждениях березы пушистой (Betula pubescens Ehrh.) травяно-мшистых групп типов леса в северной части междуречья Оби и Томи (географические координаты 56°23′186′′ с. ш., 084°32′519′′ в. д.). Подстилки характеризуются слабой насыщенностью основаниями – 35.6%, кислой реакцией среды – 4.0, зольностью – 8.9%. Среднее содержание макро- и микроэлементов образует следующий нисходящий ряд, мг/кг: Сa5105 > > Fe 4201 > Al3614 > K 986 > Mg893 > Mn 468 > Sr230 > Na 153 > Zn51 >Pb13 > Cu6.8 > Ni5 > Cr4.6 > Co 2.9 > Cd0.2. Согласно факторному анализу, состав минеральной компоненты подстилок в процессе деструкции растительных остатков на 57% определяется изменчивостью содержания тяжёлых металлов, на 37% – щелочных, щелочноземельных, Zn, Cd. Методом древовидной кластеризации морфометрические фракции растительных фрагментов (дериваты) организовались следующим образом: >10 мм, [(10–5) + + (5–3) + (3–2) + (2–1)] и [(1–0.5) + (0.5–0.25) + <0.25] мм. Дискриминантный анализ показал 100% попадание в соответствующую группу. Наибольший вклад в предсказание вносят Al и Са. По мере распада растительных фрагментов тяжелые металлы и алюминий последовательно накапливаются, щелочные и щелочноземельные металлы вымываются и наиболее активно – на стадии ферментации. Распределение минеральных компонентов в дериватах подстилок согласуется с их гумусным состоянием. В мелких морфометрических фракциях по сравнению с крупными фрагментами расширяется отношение (∑ГК + ∑ФК)/полисахариды, сужается величина С/N, накапливаются гуминовые и фульвокислоты главным образом 1-й фракции. Торфянистые подстилки характеризуются средним, умеренно опасным уровнем загрязнения: суммарный показатель загрязнения (Zc) – 18. В составе токсикантов доминируют Pb, Zn – химические элементы I класса опасности
В статье обсуждаются результаты комплексного анализа экологического состояния и средостабилизирующих функций видового состава арборифлоры в структуре городского озеленения. В основу работы положен большой фактический материал, полученный в ходе многолетнего мониторинга зеленых насаждений г. Владивостока. Разработано методическое обеспечение качественно-количественной оценки видов с использованием методов прикладной квалиметрии. В качестве единицы оценки предложен интегральный показатель – коэффициент функциональной эффективности вида (КФЭВ) в озеленении. Он представляет собой относительно-количественный показатель качества, определяемый по совокупности ряда эколого-биологических и санитарно-гигиенических свойств растений: распространенности в озеленении, жизненного статуса, способности к аккумуляции приоритетных металлов-загрязнителей в городской среде, их концентрации относительно локального экологического фона, интенсивности накопления металлов из почвы. На основе предложенного коэффициента выполнен сравнительный анализ функциональной эффективности 80 видов деревьев и кустарников, формирующих городские насаждения Владивостока. В сравниваемой выборке растений КФЭВ снижается от 3.70 у боярышника перистонадрезанного (Crataegus pinnatifida) до 1.13 у яблони маньчжурской (Malus mandshurica). Эти показатели соответствуют 74 и 23% принятого стандарта качества (СК) видов. Выделены группы видов разной функциональной значимости в городском озеленении. Наибольшую эффективность в создании комфортных для проживания горожан условий среды показали виды широкого распространения в зеленых насаждениях: ясень маньчжурский (Fraxinus mandshurica), вяз японский (Ulmus japonica), берёза плосколистная (Betula platyphylla), пузыреплодник калинолистный (Physocarpus opulifolia) и др. Для них характерно как максимальное участие в формировании структуры городского озеленения, так и высокая способность к поглощению основных металлов-загрязнителей городской среды. КФЭВ этих видов находится в пределах 3.26–2.61, что соответствует 65–52% СК. В заключении даны предложения по рациональному использованию видов в формировании комфортной городской среды и внедрению полученных результатов в практику управления городским зеленым фондом
Приведены данные по влиянию колоний серой цапли (Ardea cinerea L., 1758) на динамику параметров годичного кольца деревьев в сосняках искусственного происхождения. Показано, что начало колонизации насаждений серой цаплей можно довольно точно установить при анализе динамики параметров годичных колец деревьев, особенно ширины их позднего слоя и оптической плотности древесины (значения первого из этих параметров в контрольном насаждении ниже, а второго выше). Колонии серой цапли начинают появляться в сосняках уже с 10–12-летнего возраста, когда высота деревьев достигает 5–6 м, а диаметр ствола на высоте 1.3 м от поверхности почвы – всего 7–8 см. В первые 15–20 лет они оказывают положительное влияние на годичный прирост деревьев, особенно на ширину позднего слоя древесины и толщину клеточных стенок, но затем картина меняется на противоположную. Общее время пребывания колоний цапли на одном месте составляет около 35– 40 лет, после чего они переселяются на новые места в связи с расстройством или же полной гибелью насаждений. Для снижения вероятности появления колоний серой цапли, которые во многих случаях оказывают отрицательное влияние на состояние лесных биогеоценозов, необходимо отказаться от создания вблизи водоемов чистых сосняков, отдавая предпочтение еловым, березовым, тополевым или же липово-дубовым насаждениям
Обсуждаются проблемы перехода сосны обыкновенной (Pinus sylvestris L.) из состояния устойчивого к неустойчивому равновесию, смены равновесной популяции на неравновесную в результате потепления климата. Цель исследований – изучить состояние генеративной сферы южной и центральной лесостепных популяций сосны обыкновенной; по признаку полнозернистости оценить их жизненное состояние в 2020 г. по сравнению с 2016 – годом дестабилизации сосновых лесов, а также относительно состояния степной популяции в урожайном 2017 г. Объектами исследования служили центральная и южная лесостепные популяции сосны, произрастающие на экологически благоприятной территории Воронежской и Белгородской областей. В 2015 г. зафиксирован переход их из равновесия в слабо неравновесную систему. Уровень полнозернистости ступинской и белгородской популяций снизился соответственно на 25.6 и 24.6%, число семян – на 37.7 и 22.4%, уровень смертности семяпочек повысился в 3.9 и 4.0 раза. Сравнение показателей семенной продуктивности в 2013, 2016 и 2020 гг. показало, что в настоящее время оба насаждения представляют равновесные системы. Центральная популяция вернулась к региональной норме (устойчивого равновесия), южная находится в состоянии неустойчивого равновесия. Дисперсионный анализ выявил существенное (57.8%) влияние фактора “ГТК” на генеративную сферу белгородской популяции по признаку полнозернистости. В последнее десятилетие число оптимальных лет в ЦЧР уменьшилось с 7–8/10 лет до 5. Для возвращения сосновых лесов в равновесие требуется 3 оптимальных года. Высокие темпы потепления климата могут повлечь за собой нарушение равновесия и повторную дестабилизацию. Дальнейшее сокращение числа оптимальных лет делает почти невозможным возвращение сосновых лесов к региональной норме
Изучение динамики парцеллярной структуры лесов Приморского края необходимо для выявления закономерностей естественного восстановления уникальной формации региона – коренных хвойно-широколиственных лесов. В результате хозяйственной деятельности эти леса, насыщенные реликтовыми элементами, сменились производными на большей части ареала. Исследования проводились в водосборном бассейне р. Комаровки (Южное Приморье, Уссурийский район). В статье приведены результаты изучения парцеллярной структуры широколиственно-липового с лианами лещинового разнотравного типа леса – репрезентативного для региона и самого сложного в формации производных лесов. Метод исследований классический: на постоянной пробной площади (ППП) выполнено детальное описание и картирование в масштабе 1: 100 всех ярусов фитоценоза с последующим попарным сравнением картосхем и выделением парцелл. Анализ трансформации фитоценоза за 20 лет восстановительной сукцессии показал, что основные лесоводственно-таксационные характеристики насаждения изменились незначительно. В древостое почти полностью выпала осина и значительная часть одной из главных пород – липы. Одновременно укрепились позиции подлеска и видов деревьев, характерных для коренных хвойно-широколиственных лесов. Изменения в парцеллярной структуре свидетельствуют об успешном восстановлении коренного типа леса: в фитоценозе число парцелл уменьшилось с 12 до 10; к шести условно-коренным добавилась еще одна. Общими остались 6 парцелл, все они условно-коренные. Произошло закономерное укрупнение и условно-коренных парцелл и выравнивание их границ. Отражена высокая индикаторная роль травяного яруса
В условиях изменяющегося климата возрастает биосферная роль лесного покрова и актуальность исследований углерододепонирующей способности мировых лесов. Эти исследования содержат оценку биологической продуктивности деревьев и древостоев, включающей не только фитомассу, но и базисную плотность (БП) древесины и коры стволов. В нашем исследовании разработаны аллометрические модели БП древесины и коры деревьев 9 лесообразующих древесных видов Северной Евразии, имеющие такие независимые переменные, как возраст дерева, диаметр ствола, а также среднюю температуру января и среднегодовые осадки. Применена структура модели смешанного типа, в которой принадлежность исходных данных к каждому из древесных видов кодируется набором фиктивных переменных. На основе принципа пространственно-временного замещения полученные закономерности изменения БП в пространственных климатических градиентах использованы для прогноза их изменения в темпоральных градиентах. Подтверждено действие закона лимитирующего фактора Либиха при прогнозировании БП в пространственных и темпоральных климатических градиентах. Выявленные закономерности изменения БП древесины и коры деревьев в градиентах температур и осадков полностью повторяют ранее установленные закономерности изменения фитомассы и чистой первичной продукции деревьев и древостоев Евразии в тех же градиентах. Это означает, что климатическая обусловленность биологической продуктивности имеет общий характер как для количественных, так и для квалиметрических показателей деревьев и древостоев
Издательство
- Регион
- Россия, Москва
- Почтовый адрес
- 117997, Российская Федерация, г. Москва, ул. Профсоюзная, 84/32, стр. 14
- Юр. адрес
- 117997, Российская Федерация, г. Москва, ул. Профсоюзная, 84/32, стр. 14
- ФИО
- Лукина Наталья Васильевна (Директор)
- E-mail адрес
- cepfras@cepl.rssi.ru
- Контактный телефон
- +7 (499) 7430016
- Сайт
- http:/cepl.rssi.ru