Приведены данные по влиянию колоний серой цапли (Ardea cinerea L., 1758) на динамику параметров годичного кольца деревьев в сосняках искусственного происхождения. Показано, что начало колонизации насаждений серой цаплей можно довольно точно установить при анализе динамики параметров годичных колец деревьев, особенно ширины их позднего слоя и оптической плотности древесины (значения первого из этих параметров в контрольном насаждении ниже, а второго выше). Колонии серой цапли начинают появляться в сосняках уже с 10–12-летнего возраста, когда высота деревьев достигает 5–6 м, а диаметр ствола на высоте 1.3 м от поверхности почвы – всего 7–8 см. В первые 15–20 лет они оказывают положительное влияние на годичный прирост деревьев, особенно на ширину позднего слоя древесины и толщину клеточных стенок, но затем картина меняется на противоположную. Общее время пребывания колоний цапли на одном месте составляет около 35– 40 лет, после чего они переселяются на новые места в связи с расстройством или же полной гибелью насаждений. Для снижения вероятности появления колоний серой цапли, которые во многих случаях оказывают отрицательное влияние на состояние лесных биогеоценозов, необходимо отказаться от создания вблизи водоемов чистых сосняков, отдавая предпочтение еловым, березовым, тополевым или же липово-дубовым насаждениям
Идентификаторы и классификаторы
- SCI
- Биология
Актуальность исследования обусловлена необходимостью совершенствования технологий и методов управления качеством окружающей среды и развитием лесных биогеоценозов, в функционировании которых большую роль играют позвоночные животные, в том числе и птицы, оказывающие как положительное, так и негативное влияние на их состояние (Рахилин, 1970; Иноземцев, 1978; Кулаков, Крылов, 2018). Средообразующая деятельность птиц наиболее сильно проявляется в местах их массовых скоплений (Ардамацкая, 1967; Бреслина, Карпович, 1969; Семаго, 1975; Тараненко, 1975; Захаренко, Романов, 2009; Лысенков, 2016). Яркий пример – крупные гнездовые поселения серой цапли, где птицы привносят значительные массы органического вещества при строительстве гнёзд и особенно при выкармливании птенцов, оказывая очень большое влияние на организацию и состояние заселенных ими биогеоценозов (Чугай, 1993; Недосекин, 2001, 2003), выступая в качестве своеобразных экосистемных “инженеров” (Jones et al., 1994; Wright, Jones, 2004). Исследователями показано, что колонии цапли приводят к формированию мощной лесной подстилки, затрудняющей прорастание семян и препятствующей процессу естественного лесовозобновления, изменяют структуру и химизм почв, а также населяющих их сообществ беспозвоночных.
Список литературы
1. Ардамацкая Т.Б. Влияние массовых колоний птиц на растительность и животное население о. Орлова // Структура и функционально-биогеоценотическая роль животного населения суши. М.: Наука, 1967. С. 113-114.
2. Битвинскас Т.Т. Дендроклиматические исследования. Л.: Гидрометеоиздат, 1974. 172 с.
3. Бреслина И.П., Карпович В.Н. Развитие растительности под влиянием жизнедеятельности колониальных птиц // Ботанический журн. 1969. № 5. С. 690–696.
4. Ваганов Е.А., Шиятов С.Г., Мазепа В.С. Дендроклиматические исследования в Урало-Сибирской Субарктике. Новосибирск: Наука, 1996. 246 с. EDN: QYXFGP
5. Демаков Ю.П., Нуреев Н.Б., Митякова И.И. Влияние характера хозяйственного использования приовражных земель на свойства почв // Вестник Поволжского государственного технологического университета. Сер.: Лес. Экология. Природопользование. 2020. № 4(48). С. 77-95.
6. Демаков Ю.П., Нуреева Т.В., Краснов В.Г., Рыжков А.А. Эколого-ресурсный потенциал лесных насаждений на приовражно-балочных землях Среднего Поволжья // Вестник Поволжского государственного технологического университета. Сер.: Лес. Экология. Природопользование. 2017. № 3(35). С. 73-87.
7. Долгова Е.А. Связь с засушливостью ширины колец ранней и поздней древесины и оптической плотности колец сосны (на примере Калужской области) // Засухи Восточно-Европейской равнины по гидрометеорологическим и дендрохронологическим данным. Санкт-Петербург: Нестор-История, 2017. С. 208-222.
8. Захаренко К.А., Романов В.В. О влиянии колониального поселения озерных чаек на особенности химического состава почв в условиях Владимирского ополья // Вестник Оренбургского государственного университета. 2009. № 6(110). С. 147-152. EDN: MNKTIR
9. Иноземцев А.А. Роль насекомоядных птиц в лесных биогеоценозах. Л.: ЛГУ, 1978. 264 с.
10. Кулаков Д.В., Крылов А.В. Влияние птиц на среду обитания // Природа. 2018. № 5(1233). С. 22-31. EDN: XNSHSH
11. Лакин Г.Ф. Биометрия. М.: Высшая школа, 1990. 352 с. EDN: NRSJMF
12. Лысенков Е.В. Средообразующая роль врановых в антропогенных ландшафтах // Русский орнитологический журн. 2016. Т. 25. № 1371. С. 4643–4647. EDN: XAELYH
13. Недосекин A.A. Изменение химического состава почвы под влиянием колонии серых цапель // Актуальные проблемы экологии и природопользования. М.: РУДН, 2003. Вып. 3. С. 90-93.
14. Недосекин A.A. Изменения в распределении растительного покрова под гнездами в колонии серых цапель в Тульских засеках // Актуальные проблемы изучения и охраны птиц Восточной Европы и Северной Азии. Казань: Изд-во Казанского университета, 2001. С. 467-468.
15. Овчинников Д.В., Ерёмина А.Д., Овчинников С.Д., Кладько Ю.В. Потенциал оптической плотности древесины в дендроклиматологии // География и геоэкология на службе науки и инновационного образования. Красноярск: КГУ, 2018. Вып. 13. С. 68-70.
16. Рахилин В.К. О средообразующей роли птиц фауны СССР // Средообразующая деятельность животных. М.: Наука, 1970. С. 15-18.
17. Семаго Л.Л. К вопросу о средообразующей деятельности колониальных и стайных птиц // Проблемы изучения и охраны ландшафтов. Воронеж: Воронежское кн. изд-во, 1975. С. 45-47.
18. Тараненко Л.И. Влияние колониального гнездования грачей на окружающую среду // Роль животных в функционировании экосистем. М.: Наука, 1975. С. 104-106.
19. Чугай С. Роль колоний серой цапли в функционировании экосистем пойменных черноольшанников // Птицы бассейна Северского Донца. Донецк: ДГУ, 1993. С. 50-52.
20. Шиятов С.Г. Дендрохронология, её принципы и методы // Записки Всесоюзного ботанического общества. Вып. 6. Проблемы ботаники на Урале. Свердловск: УНЦ АН СССР, 1973. С. 53-81.
21. Björklund J.A., Gunnarson B.E., Seftigen K., Esper J., Linderholm H.W. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information // Climate of the Past. 2014. V. 10. P. 877–885. EDN: SOQFZB
22. Björklund J.A., Gunnarson B.E, Seftigen K., Zhang P., Fuentes M. Using adjusted Blue Intensity data to attain high quality summer temperature information: A case study from Central Scandinavia // The Holocene. 2015. V. 25. № 3. P. 547–556. EDN: UPGDRN
23. Campbell R., McCarroll D., Robertson I., Loader N.J., Grudd H., Gunnarson B.E. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy // Tree-ring Research. 2011. V. 67. P. 127–134. EDN: OLQJVX
24. Fuentes M., Salo R., Björklund J., Seftigen K., Zhang P., Gunnarson B. et al. 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings // The Holocene. 2017. V. 28. № 2. P. 254–266. EDN: YFAMUH
25. Jones C.G., Lawton J.H., Shachak M. Organisms as ecosystem engineers // Oikos. 1994. V. 69. P. 373–386.
26. McCarroll D., Pettigrew E., Luckman A., Guibal F., Edouard J.-L. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings // Arctic, Antarctic and Alpine Research. 2002. V. 34. № 4. P. 450–453.
27. Rydval M., Larsson L.A., McGlynn L., Gunnarson B.E., Loader N.J., Young G.H., Wilson R. Blue intensity for dendroclimatology: should we have the blues? Experiments from Scotland // Dendrochronologia. 2014. V. 32. № 3. P. 191–204. EDN: UPGDQT
28. Wright J.P., Jones C.G. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity // Ecology. 2004. V. 85. № 8. P. 2071–2081.
Выпуск
Другие статьи выпуска
В статье приведен анализ исторических данных по организации и состоянию геоэкологических исследований в горных лесах России и Северного Кавказа. На примере регионального мониторинга горных лесных экосистем показана организация многоцелевого природопользования в пределах горных водосборных бассейнов. По результатам экспериментального материала, полученного многолетним мониторингом на комплексных лесогидрологических стационарах с постановкой активных экспериментов, даны рекомендации по лесопользованию в горах. Показан пример получения информации экспедиционными методами, а также компьютерное моделирование лесохозяйственного освоения в условиях горных регионов. Предложены научные принципы и экологические основы ведения хозяйства в лесах горных регионов страны
Опасность массовых размножений стволовых вредителей в Ленинградской области и Республике Карелии возрастает. Однако данные по состоянию их популяций на северо-западе европейской части России немногочисленны и весьма разнородны. Они включают материалы статей и обзоров санитарного и лесопатологического состояния, которые, в свою очередь, основываются на совершенно разных методических подходах к получению информации. Обобщение и анализ данных по увеличению численности стволовых вредителей, представляющих опасность для хвойных древостоев северо-запада европейской части России, с учетом материалов научных отчетов и лесопатологического мониторинга – актуальная задача данной работы. Наибольшую опасность для еловых древостоев представляет короед-типограф Ips typographus (Linnaeus, 1758), формирующий масштабные очаги массового размножения. Основные факторы, обуславливающие начало формирования очагов размножения, – погодные условия (ураганные ветры и образование ветровалов, увеличение температуры в течение вегетационного сезона и недостаток осадков). В конце XX–начале XXI в. частоты вспышек массовых размножений стволовых вредителей, в особенности короеда-типографа, в Ленинградской области увеличились. Начиная со второй половины XX в., отмечаются вспышки размножения в Республике Карелии. В Мурманской области стволовые вредители не оказывают заметного влияния на состояние древостоев. Эти тенденции соответствуют тренду увеличения температуры в Ленинградской области и Карелии и несущественному изменению температуры в Мурманской области. Дополнительное питание сосновых лубоедов и черных усачей в случаях их массового размножения – недооцененный фактор ослабления древостоев, который существенно влияет на прирост и состояние окружающих насаждений. Появление инвазивных видов, таких как союзный короед Ips amitinus (Eichhoff, 1872) (Curculionidae: Coleoptera), представляет потенциальную опасность, однако в настоящее время в сосновых и еловых лесах на севере европейской части России этот вид не проявляет существенной активности
Изучались торфянистые подстилки мохово-древесного состава в насаждениях березы пушистой (Betula pubescens Ehrh.) травяно-мшистых групп типов леса в северной части междуречья Оби и Томи (географические координаты 56°23′186′′ с. ш., 084°32′519′′ в. д.). Подстилки характеризуются слабой насыщенностью основаниями – 35.6%, кислой реакцией среды – 4.0, зольностью – 8.9%. Среднее содержание макро- и микроэлементов образует следующий нисходящий ряд, мг/кг: Сa5105 > > Fe 4201 > Al3614 > K 986 > Mg893 > Mn 468 > Sr230 > Na 153 > Zn51 >Pb13 > Cu6.8 > Ni5 > Cr4.6 > Co 2.9 > Cd0.2. Согласно факторному анализу, состав минеральной компоненты подстилок в процессе деструкции растительных остатков на 57% определяется изменчивостью содержания тяжёлых металлов, на 37% – щелочных, щелочноземельных, Zn, Cd. Методом древовидной кластеризации морфометрические фракции растительных фрагментов (дериваты) организовались следующим образом: >10 мм, [(10–5) + + (5–3) + (3–2) + (2–1)] и [(1–0.5) + (0.5–0.25) + <0.25] мм. Дискриминантный анализ показал 100% попадание в соответствующую группу. Наибольший вклад в предсказание вносят Al и Са. По мере распада растительных фрагментов тяжелые металлы и алюминий последовательно накапливаются, щелочные и щелочноземельные металлы вымываются и наиболее активно – на стадии ферментации. Распределение минеральных компонентов в дериватах подстилок согласуется с их гумусным состоянием. В мелких морфометрических фракциях по сравнению с крупными фрагментами расширяется отношение (∑ГК + ∑ФК)/полисахариды, сужается величина С/N, накапливаются гуминовые и фульвокислоты главным образом 1-й фракции. Торфянистые подстилки характеризуются средним, умеренно опасным уровнем загрязнения: суммарный показатель загрязнения (Zc) – 18. В составе токсикантов доминируют Pb, Zn – химические элементы I класса опасности
В статье обсуждаются результаты комплексного анализа экологического состояния и средостабилизирующих функций видового состава арборифлоры в структуре городского озеленения. В основу работы положен большой фактический материал, полученный в ходе многолетнего мониторинга зеленых насаждений г. Владивостока. Разработано методическое обеспечение качественно-количественной оценки видов с использованием методов прикладной квалиметрии. В качестве единицы оценки предложен интегральный показатель – коэффициент функциональной эффективности вида (КФЭВ) в озеленении. Он представляет собой относительно-количественный показатель качества, определяемый по совокупности ряда эколого-биологических и санитарно-гигиенических свойств растений: распространенности в озеленении, жизненного статуса, способности к аккумуляции приоритетных металлов-загрязнителей в городской среде, их концентрации относительно локального экологического фона, интенсивности накопления металлов из почвы. На основе предложенного коэффициента выполнен сравнительный анализ функциональной эффективности 80 видов деревьев и кустарников, формирующих городские насаждения Владивостока. В сравниваемой выборке растений КФЭВ снижается от 3.70 у боярышника перистонадрезанного (Crataegus pinnatifida) до 1.13 у яблони маньчжурской (Malus mandshurica). Эти показатели соответствуют 74 и 23% принятого стандарта качества (СК) видов. Выделены группы видов разной функциональной значимости в городском озеленении. Наибольшую эффективность в создании комфортных для проживания горожан условий среды показали виды широкого распространения в зеленых насаждениях: ясень маньчжурский (Fraxinus mandshurica), вяз японский (Ulmus japonica), берёза плосколистная (Betula platyphylla), пузыреплодник калинолистный (Physocarpus opulifolia) и др. Для них характерно как максимальное участие в формировании структуры городского озеленения, так и высокая способность к поглощению основных металлов-загрязнителей городской среды. КФЭВ этих видов находится в пределах 3.26–2.61, что соответствует 65–52% СК. В заключении даны предложения по рациональному использованию видов в формировании комфортной городской среды и внедрению полученных результатов в практику управления городским зеленым фондом
Изучены культуры 1Б класса бонитета полнотой 0.95 на площади 0.64 га, созданные на вырубке по схеме 1.82 × 1.10 м. На план наносили живые и отпавшие деревья и площади их питания в программе “ArcMap-ArcView”. Территорию разделили на 9 секций, с густотой 76–122% от среднего по насаждению. Доставшаяся деревьям в возрасте 30 лет площадь питания повлияла на диаметр ствола в 55 лет в редких местах древостоя с силой 13.3%, а в густых местах – с силой 5.0%. То есть подтвердилась гипотеза, что влияние площади питания дерева на диаметр ствола может быть слабым также и в среднем возрасте насаждений, и уровень его влияния зависит от густоты древостоя. Отпад деревьев к 55 годам коррелировал с частотой в классах площади питания (r = 0.96 ± 0.03), поэтому площадь питания менее среднего значения повышала вероятность отпада дерева к 55 годам всего лишь на 7%. Выдвинуто предположение, что снижение влияния площади питания при высокой густоте происходит из-за усиления кооперации деревьев. При имитационном разреживании культур, с увеличением площади питания у оставляемых деревьев в 2 раза было получено соответствующее увеличение диаметра только у 11% деревьев. Остальные 89% деревьев не воспользовались доставшейся им большей площадью питания и не увеличили свои размеры, несмотря на 25 лет развития при более свободном стоянии. Это указывает на то, что в культурах второго класса возраста увеличение площади питания деревьев уже не приводит к улучшению их развития в подавляющем числе случаев. Поэтому густоту следует снижать в намного более раннем возрасте, например, в 10–15 лет
Обсуждаются проблемы перехода сосны обыкновенной (Pinus sylvestris L.) из состояния устойчивого к неустойчивому равновесию, смены равновесной популяции на неравновесную в результате потепления климата. Цель исследований – изучить состояние генеративной сферы южной и центральной лесостепных популяций сосны обыкновенной; по признаку полнозернистости оценить их жизненное состояние в 2020 г. по сравнению с 2016 – годом дестабилизации сосновых лесов, а также относительно состояния степной популяции в урожайном 2017 г. Объектами исследования служили центральная и южная лесостепные популяции сосны, произрастающие на экологически благоприятной территории Воронежской и Белгородской областей. В 2015 г. зафиксирован переход их из равновесия в слабо неравновесную систему. Уровень полнозернистости ступинской и белгородской популяций снизился соответственно на 25.6 и 24.6%, число семян – на 37.7 и 22.4%, уровень смертности семяпочек повысился в 3.9 и 4.0 раза. Сравнение показателей семенной продуктивности в 2013, 2016 и 2020 гг. показало, что в настоящее время оба насаждения представляют равновесные системы. Центральная популяция вернулась к региональной норме (устойчивого равновесия), южная находится в состоянии неустойчивого равновесия. Дисперсионный анализ выявил существенное (57.8%) влияние фактора “ГТК” на генеративную сферу белгородской популяции по признаку полнозернистости. В последнее десятилетие число оптимальных лет в ЦЧР уменьшилось с 7–8/10 лет до 5. Для возвращения сосновых лесов в равновесие требуется 3 оптимальных года. Высокие темпы потепления климата могут повлечь за собой нарушение равновесия и повторную дестабилизацию. Дальнейшее сокращение числа оптимальных лет делает почти невозможным возвращение сосновых лесов к региональной норме
Изучение динамики парцеллярной структуры лесов Приморского края необходимо для выявления закономерностей естественного восстановления уникальной формации региона – коренных хвойно-широколиственных лесов. В результате хозяйственной деятельности эти леса, насыщенные реликтовыми элементами, сменились производными на большей части ареала. Исследования проводились в водосборном бассейне р. Комаровки (Южное Приморье, Уссурийский район). В статье приведены результаты изучения парцеллярной структуры широколиственно-липового с лианами лещинового разнотравного типа леса – репрезентативного для региона и самого сложного в формации производных лесов. Метод исследований классический: на постоянной пробной площади (ППП) выполнено детальное описание и картирование в масштабе 1: 100 всех ярусов фитоценоза с последующим попарным сравнением картосхем и выделением парцелл. Анализ трансформации фитоценоза за 20 лет восстановительной сукцессии показал, что основные лесоводственно-таксационные характеристики насаждения изменились незначительно. В древостое почти полностью выпала осина и значительная часть одной из главных пород – липы. Одновременно укрепились позиции подлеска и видов деревьев, характерных для коренных хвойно-широколиственных лесов. Изменения в парцеллярной структуре свидетельствуют об успешном восстановлении коренного типа леса: в фитоценозе число парцелл уменьшилось с 12 до 10; к шести условно-коренным добавилась еще одна. Общими остались 6 парцелл, все они условно-коренные. Произошло закономерное укрупнение и условно-коренных парцелл и выравнивание их границ. Отражена высокая индикаторная роль травяного яруса
В условиях изменяющегося климата возрастает биосферная роль лесного покрова и актуальность исследований углерододепонирующей способности мировых лесов. Эти исследования содержат оценку биологической продуктивности деревьев и древостоев, включающей не только фитомассу, но и базисную плотность (БП) древесины и коры стволов. В нашем исследовании разработаны аллометрические модели БП древесины и коры деревьев 9 лесообразующих древесных видов Северной Евразии, имеющие такие независимые переменные, как возраст дерева, диаметр ствола, а также среднюю температуру января и среднегодовые осадки. Применена структура модели смешанного типа, в которой принадлежность исходных данных к каждому из древесных видов кодируется набором фиктивных переменных. На основе принципа пространственно-временного замещения полученные закономерности изменения БП в пространственных климатических градиентах использованы для прогноза их изменения в темпоральных градиентах. Подтверждено действие закона лимитирующего фактора Либиха при прогнозировании БП в пространственных и темпоральных климатических градиентах. Выявленные закономерности изменения БП древесины и коры деревьев в градиентах температур и осадков полностью повторяют ранее установленные закономерности изменения фитомассы и чистой первичной продукции деревьев и древостоев Евразии в тех же градиентах. Это означает, что климатическая обусловленность биологической продуктивности имеет общий характер как для количественных, так и для квалиметрических показателей деревьев и древостоев
Издательство
- Регион
- Россия, Москва
- Почтовый адрес
- 117997, Российская Федерация, г. Москва, ул. Профсоюзная, 84/32, стр. 14
- Юр. адрес
- 117997, Российская Федерация, г. Москва, ул. Профсоюзная, 84/32, стр. 14
- ФИО
- Лукина Наталья Васильевна (Директор)
- E-mail адрес
- cepfras@cepl.rssi.ru
- Контактный телефон
- +7 (499) 7430016
- Сайт
- http:/cepl.rssi.ru