Архив статей журнала
Геометрия Лобачевского моделирует среду с материальными уравнениями специального вида: Di = ϵ0ϵikEk, Bi = μ0μikHk, где два тензора совпадают: ϵik(x) = μik(x). В пространстве Лобачевского используются квазидекартовые координаты (x, y, z), они моделируют среду, неоднородную вдоль оси z. В этих координатах построены точные решения уравнений Максвелла в комплексной форме Майораны-Оппенгеймера. Задача сводится к дифференциальному уравнению второго порядка для некоторой основной функции, это уравнение может быть связано с одномерной задачей Шредингера для частицы во внешнем потенциальном поле U(z) = U0e2z. В квантовой механике геометрия Лобачевского действует как эффективный потенциальный барьер с коэффициентом отражения R = 1; в электродинамическом контексте эта геометрия действует как распределенное в пространстве идеальное зеркало. Проникновение электромагнитного поля в эффективную среду вдоль оси z зависит от характеристик электромагнитной волны ω, k2 1 +k2 2 и радиуса кривизны ρ пространства Лобачевского. Построенные обобщенные волновые решения f(t, x, y, z) = E + iB и соответствующая система уравнений преобразуются в действительную форму, что позволяет связать геометрические характеристики с выражениями для эффективных тензоров электрической и магнитной проницаемостей.
Цель работы - исследование нерелятивистского приближения в 39-компонентной теории частицы со спином 2. Используется явный вид матриц Γa размерности 39×39 основного уравнения, записанного в декартовых координатах и с учетом внешних электромагнитных полей. Для выделения в волновой функции больших и малых переменных с точки зрения нерелятивистского приближения используются проективные операторы, строящиеся на основе минимального полинома 7-й степени для матрицы Γ0. Разбиение на большие и малые переменные проведено в явном виде, в каждой группе найдены независимые переменные, остальные выражены через них. В частности, среди больших переменных независимыми являются только 5. Выведено нерелятивистское уравнение для 5-компонентной волновой функции; в нем выделен член, описывающий взаимодействие магнитного момента частицы с внешним магнитным полем. Этот дополнительный член взаимодействия строится из проекций оператора спина и компонент внешнего магнитного поля.