Архив статей журнала
В работе рассмотрен вопрос выбора оптимальных параметров работы диагностичской установки для двигателя внутреннего сгорания. Разработана методика и утверждена программа проведения лабораторного эксперимента. С применением метода математического планирования составлена план-матрица трехфакторного эксперимента 33. Объектами ис-следования выбраны пневматические клапаны, давление воздуха в пневматической системе и интервал подачи сжатого воздуха в градусах поворота коленчатого вала. В результате про-веденного эксперимента получены данные изменения угла поворота распределительного ва-ла после прекращения подачи воздуха в цилиндр ДВС в зависимости от изменения заданных параметров работы установки. Проведена статистическая обработка значений с расчетом не-обходимых величин среднего значения, дисперсии и коэффициента вариации. Проверка на достоверность полученных данных подтвердила воспроизводимость процесса. Полученные при проведении эксперимента результаты обработаны статистически с получением регрессионных уравнений. Построены трехмерные графики поверхностей и двухмерные графики зависимости угла поворота распределительного вала после прекращения подачи воздуха в цилиндр ДВС от значений варьируемых факторов. Выполненный анализ результатов лабораторного эксперимента позволяет определить наиболее рациональные конструкторские и технологические параметры работы диагностической установки для двигателя внутреннего сгорания. Определены параметры диагностической установки для двигателя внутреннего сгорания: сечение пневматического клапана от 29,5 до 34,5 мм2; давление в системе от 0,48 до 0,62 МПа; интервал подачи сжатого воздуха в градусах поворота коленчатого вала от 140 до 180°, обеспечивающий угол поворота распределительного вала от 95 до 110°.
В статье демонстрируются результаты моделирования условного предела текучести в трубных сталях после термообработки улучшением. Описываются основные типы моделей, использующиеся в работе, обобщается информация о плюсах и минусах разных подходов к моделированию целевой переменной. Приводятся эмпирические уравнения связи твердости, предела текучести и предела прочности. Указывается роль параметра n в приведенных уравнениях. Объясняются причины выбора применяемого набора независимых переменных в моделях. Показывается распределение целевой переменной в выборке данных, приводится информация о признаковом пространстве, использованном для каждой из рассмотренных моделей. Представлено общее описание исходных данных. Исследуется структура основной выборки данных с помощью метода кластеризации DBSCAN и алгоритма снижения размерности t-SNE. Обосновывается причина дробления выборки на кластеры в контексте снижения разброса прогнозируемой величины условного предела текучести. Оценивается эффективность разбиения выборки с помощью меры разброса введенного параметра n. Проводится сравнение различных регрессионных моделей прогнозирования предела текучести. Показы-вается, что регрессионная модель на основе градиентного бустинга над деревьями решений (LightGBM) имеет наименьшую ошибку прогнозирования среди рассмотренных моделей. Определяется перестановочная значимость признаков модели с наименьшей ошибкой прогнозирования, приводится сравнение вычисленной значимости признаков с данными метал-лургической теории. Оценивается валидность полученных моделей прогнозирования с учетом значимости признаков и метрической оценки, используемой в данной работе. Проверяется гипотеза об использовании проксипеременной (параметра n), полученной на основе теоретических выкладок, в качестве предиктора модели предсказания предела текучести. Демонстрируется, что использование метода группировки совместно с параметром n позволяет получать удовлетворительные результаты прогнозирования на меньшем признаковом пространстве.