Рассматриваются системы линейных автономных функционально-дифференциальных уравнений запаздывающего типа, причём коэффициенты в системе могут быть любого знака. Указанные системы ФДУ включают в себя уравнения с различными видами последействия, в том числе сосредоточенные и распределённые запаздывания. Цель настоящей работы – получение новых эффективных признаков экспоненциальной устойчивости для систем линейных автономных ФДУ запаздывающего типа. Исследование базируется на идее построения вспомогательной системы, так называемой «системы сравнения», которая, с одной стороны, имеет более простую структуру, а с другой стороны, те же асимптотические свойства, что и исходная система. Система сравнения также может содержать запаздывания, причём не только сосредоточенные, но и распределённые. Система сравнения строится таким образом, что все компоненты её фундаментальной матрицы неотрицательны. Так как матрицы коэффициентов в системе сравнения являются диагональными, то её можно рассматривать как совокупность независимых скалярных уравнений. Для фундаментальных решений таких уравнений в работах В. В. Малыгиной и К. М. Чудинова были получены точные двусторонние экспоненциальные оценки, также дающие экспоненциальную оценку для фундаментальной матрицы системы сравнения. Для автономных ФДУ запаздывающего типа, как известно, стремление к нулю всегда происходит по экспоненциальному закону, что означает существование таких положительных постоянных N и α, что ( ) t x t Ne−α ≤. Однако без указания оценок на коэффициент N и показатель экспоненты α или алгоритма их эффективного вычисления задача об экспоненциальной устойчивости не может считаться до конца решённой. В предлагаемом исследовании наряду с новыми признаками экспоненциальной устойчивости найдены оценки скорости стремления компонент фундаментальной матрицы изучаемой системы линейных автономных ФДУ к нулю. Эффективность полученных результатов иллюстрируется несколькими примерами, в которых в качестве систем сравнения выбираются ФДУ с различными видами последействия
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.