Работа посвящена имитационному моделированию эволюции температурного поля в многослойной фоточувствительной структуре матричного фотоприемника (МФП) при облучении его интенсивным лазерным излучением. Разработанная модель позволяет учитывать топологию и параметры многослойной структуры МФП, физические характеристики ее материалов, а также свойства криогенной охлаждающей системы. Результаты использованы для оценки нагрева InSb МФП импульсным лазерным излучением.
В данной работе рассматриваются вопросы оптимизации условий роста в методе молекулярно-лучевой эпитаксии для создания высокоэффективных инфракрасных фотоприемников с квантовыми точками. В качестве модельной материальной системы для теоретических исследований выбраны гетероструктуры с квантовыми точками германия и кремния на поверхности кремния. Для расчетов зависимостей параметров массива квантовых точек в условиях синтеза предложена кинетическая модель роста квантовых точек различной формы на основе общей теории нуклеации. Теория улучшается путем учета изменения свободной энергии зарождения островка за счет образования дополнительных ребер островков и за счет зависимости поверхностных энергий граней квантовых точек от толщины двумерного смачивающего слоя при росте по механизму Странского–Крастанова. Проведены расчеты шумовых и сигнальных характеристик инфракрасных фотоприемников на основе гетероструктур с квантовыми точками германия на кремнии. Оценены темновые токи в таких структурах, вызванные тепловой эмиссией и барьерным туннелированием носителей, а также обнаружительная способность фотоприемника в приближении ограничений генерационнорекомбинационными шумами. Приводятся результаты расчетов параметров гетероструктур с квантовыми точками и их зависимости от параметров роста, а также характеристики квантово-точечных фотоприемников. Проведено сравнение рассчитанных параметров ансамблей квантовых точек и характеристик квантово-точечных фотоприемников с экспериментальными данными.
Проведены исследования темновых токов и шумов фоточувствительных элементов (ФЧЭ) многорядных фотоприемных модулей (ФПМ) на основе гетероэпитаксиальных (ГЭС) структур HgCdTe с шагом 28 мкм средневолнового и длинноволнового ИК-диапазонов спектра при обратном напряжении смещения V = -0,1 В. Показано, что значение обнаружительной способности D* 1012 см Вт-1 Гц1/2 для ФПМ средневолнового диапазона достигается при темновых токах менее 10-11 А. Измерены зависимости фотосигнала и шума от времени накопления для ФПМ длинноволнового ИК-диапазонов спектра. Показано, что фотосигнал растет линейно в зависимости от времени накопления в диапазоне Тнак = 25–200 мкс, а шум возрастает приблизительно в 2 раз.
Измеренные интенсивности газообразования при частичных разрядах в рапсовом и трансформаторном маслах оказались близкими по значению. Кажущийся заряд единичного частичного разряда в трансформаторном масле, в среднем, выше, чем в рапсовом. Частота возникновения частичного разряда в рапсовом масле выше, чем в трансформаторном.
Исследовано воздействие на углеродные волокна импульсных токов с амплитудным значением в тысячи ампер и длительностью 250 мкс. При таких токах происходит частичное испарение материала волокна. Вылетевшие частицы образуют плазму, малое сопротивление которой шунтирует углеродное волокно, предохраняя его от полного разрушения. В первом импульсе происходит пробой диэлектрической матрицы композита, причем плотность образовавшейся плазмы оказывается большой, и ее проводимость определяется процессами рассеяния электронов на частицах плазмы. При повторных импульсах плотность плазмы существенно уменьшается и ее проводимость носит индуктивный характер. Полученные временные зависимости тока и напряжения позволяют провести оценку некоторых параметров плазмы, образовавшейся при первичном и последующих импульсных воздействиях.
В статье представлены результаты экспериментальных газодинамических исследований PIV-методом плазменных струй, сформированных коаксиальным барьерным разрядом в потоке аргона при атмосферном давлении. Разряд поддерживался синусоидальным напряжением с частотой 90 кГц. Показано, что периодические пробои, создаваемые барьерным разрядом в потоке, инициируют переход ламинарного течения в турбулентный режим даже при низких числах Рейнольдса. Результаты, полученные PIV-методом, обнаружили, что мощный БР существенно увеличивает коэффициент турбулентной диффузии в изначально турбулентном потоке. Установлено, что максимальная длина плазменной струи, на которой сохраняется ее плазмохимическая активность, определяется не только начальной скоростью струи, но и степенью ее расширения.
На стеллараторе Л-2М при увеличении мощности ЭЦР-нагрева плазмы исследована динамика формы спектров мягкого рентгеновского излучения (SXR-спектров), температуры тепловой части SXR-спектров и экспериментально определенного энергетического времени жизни плазмы. Измерены зависимости температур тепловой и надтепловой частей спектров от мощности нагрева и плотности плазмы при увеличении удельной мощности нагрева 3,0 МВт/м3. Установлено, что при увеличении удельной мощности ЭЦР-нагрева до 3,0 МВ/м3 на стеллараторе Л-2М не происходит заметного ухудшения удержания плазмы.
Работа является продолжением цикла работ по созданию широкополосных плазменных СВЧизлучателей на основе гладкого волновода. Рассмотрены различные методы создания СВЧисточников. Рассматривались различные способы разрыва обратной связи для получения сплошного спектра СВЧ-излучения. Показан переход плазменного релятивистского генератора в режим усилителя шума при изменении параметров численного расчета. Результаты проведенных численных экспериментов позволяют определить параметры экспериментальных установок, которые планируется создать и исследовать в следующих работах. В случае, когда время прохождения волны по длине генератора превышает длительность импульса РЭП, спектр СВЧ-излучения сплошной. Если же время прохождения существенно меньше длительности импульса, то наблюдается излучение линейчатых спектров на частотах, при которых длина генератора кратна числу полуволн, так как генерация происходит на продольных типах волн плазменного генератора. Достигнута перестройка средней частоты излучения от 3 до 9 ГГЦ в обоих экспериментах на уровне мощности порядка 40 МВт.
Описано устройство и приведены характеристики модернизированного экспериментальнодиагностического стенда, разработанного в Институте сильноточной электроники СО РАН (г. Томск). Стенд оснащен вакуумно-дуговым источником ионов металлов, и системой диагностики, включающей времяпролетный спектрометр масс-зарядового состава ионного пучка. Обозначены перспективы применения экспериментально-диагностического стенда в исследованиях плазмы вакуумного дугового разряда с композитными и газонасыщенными катодами.
Разработан, изготовлен и протестирован высоковольтный генератор синусоидального сигнала с изменяемой частотой для питания плазменных актуаторов. Использована схема усилителя класса D. Частота и амплитуда задается внешним низковольтным генератором синуса. Основные параметры: выходная мощность до 1 кВт, амплитуда выходного сигнала до 10 кВ, диапазон изменения частоты 4–10 кГц. Получены осциллограммы выходного напряжения генератора на емкостной нагрузке при частотах 4–10 кГц.
Приведены результаты теоретического анализа и экспериментального исследования влияния условий теплосъема на температурное поле импульсного газоразрядного источника ИКизлучения. На основе математической модели выявлен радиальный профиль цезиевого разряда, ограниченного системой из двух сапфировых оболочек, рассчитан энергетический баланс излучения и конвективного теплосъема при различных коэффициентах теплоотдачи. Экспериментально изучено влияние на температурный профиль лампы расхода и скорости охлаждающего потока, а также теплопроводности газа – теплоносителя, заполняющего зазор между сапфировыми оболочками.
В работе изучалось воздействие плазменной обработки в среде азота на DC-характеристики HEMT-транзисторов. Показано, что падение токов насыщения транзистора в результате плазменной обработки высокоэнергетичными ионами может быть связано с образованием на поверхности GaN cap-слоя транзисторной структуры зарядовых рассеивающих центров, которые приводят к кулоновскому рассеянию носителей в 2DEG канале, что приводит к падению тока насыщения приборов.