На основе метода матрицы переноса разработана численная модель по расчету спектров пропускания и отражения многослойных эпитаксиальных гетероструктур для спектрального диапазона, в котором отсутствует высокое поглощение в материале. Проведен численный анализ зависимостей целевой длины волны излучения, ширины стоп-зоны и величины коэффициента пропускания брэгговских зеркал от технологических параметров структуры и различных полупроводниковых материалов, используемых в оптоэлектронике. Корректность получаемых результатов была установлена из сравнения расчетных спектров пропускания с измеренными спектрами для зеркал, изготовленных на основе гетеропары Pb1-xEuxTe/EuTe с составами x < 0,1 для спектрального диапазона от 3,5 до 5 мкм. Из расчетов показано, что данные материалы обладают высоким оптическим контрастом в гетеропаре от 0,37 до 0,39, пропускание зеркал в стоп-зоне составляет менее 5 % для трех пар, для четырех пар – менее 1 %. Ширина стоп-зоны для нужного спектрального диапазона находится в пределах от 1100 см-1 до 1400 см-1.
Проведены исследования темновых токов и шумов фоточувствительных элементов (ФЧЭ) многорядных фотоприемных модулей (ФПМ) на основе гетероэпитаксиальных (ГЭС) структур HgCdTe с шагом 28 мкм средневолнового и длинноволнового ИК-диапазонов спектра при обратном напряжении смещения V = -0,1 В. Показано, что значение обнаружительной способности D* 1012 см Вт-1 Гц1/2 для ФПМ средневолнового диапазона достигается при темновых токах менее 10-11 А. Измерены зависимости фотосигнала и шума от времени накопления для ФПМ длинноволнового ИК-диапазонов спектра. Показано, что фотосигнал растет линейно в зависимости от времени накопления в диапазоне Тнак = 25–200 мкс, а шум возрастает приблизительно в 2 раз.
Разработана методика контроля спектров фотолюминесценции для многослойных гетероэпитаксиальных структур с квантовыми ямами на основе AlGaAs/GaAs, выращенных методом молекулярно-лучевой эпитаксии. Проведен расчет уровней размерного квантования в квантовых ямах. Построены тепловые карты распределения значений длины волны и интенсивности в максимуме спектра фотолюминесценции по поверхности эпитаксиальных слоев различного состава. Картографирование позволило оценить однородность распределения состава и толщины эпитаксиальных слоев по поверхности образцов. Проведенное исследование является перспективным для усовершенствования методик входного и межоперационного контроля многослойных гетероэпитаксиальных структур, используемых в технологии изготовления матричных фотоприемных устройств ИК-диапазона.
Разработан метод определения характеристик слабо нагретых объектов в плотных отражающих средах, который позволяет корректно проводить расчеты коэффициентов излучения, отражения и температур, обеспечивая поиск объектов в сложных условиях. Для расчета предложена оригинальная система уравнений, учитывающая особенности объектов и задающая распределение излучения в области наблюдения тепловизионной системы в спектральных диапазонах 3–5 и 8–12 мкм.