Рассматриваются задача создания модели распознавания объектов на изображениях и возможные способы ее решения на примере работы с российскими дорожными знаками по ГОСТ Р 52290-2004. Проведен анализ способов построения прогностических моделей распознавания изображений, существующих решений в открытом доступе. В качестве базовой модели используется сверточная нейронная сеть. Разработана модель распознавания дорожных знаков на базе трансферной сети YOLOv7 в результате дообучения на наборе данных из российской базы изображений автодорожных знаков RTSD. Проанализированы и описаны метрики оценки качества работы созданной модели. Созданная модель отвечает требованиям качества в отношении объективных метрик, позволяет строить прогнозы с учетом специфических ситуаций в различных погодных условиях и в разное время суток для 146 различных предопределенных классов. Характеристикой класса является номер знака по ГОСТ Р 52290-2004. Модель обладает точностью предсказаний, равной 0,847 при полноте предсказаний в 0,811. Усредненная точность предсказаний модели - 0,884 при тестировании на 493 изображениях из тестовой выборки. Тестовая выборка не пересекается с обучающей, составляющей 1 842 изображения. Разработанная модель опубликована в открытом доступе как для использования в научных целях, так и для дальнейшего дообучения. Это дает возможность исследователям в данной области ознакомиться с практическим примером реализации модели, дополнить или улучшить его при необходимости. Описанный в работе метод позволит исследователям в различных предметных областях найти решение, позволяющее преодолеть ресурсные ограничения при создании высокопроизводительной и качественной прогностической модели распознавания.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.