Архив статей

Интеллектуальная система анализа и классификации генераторов псевдослучайных чисел (2025)
Выпуск: Том 25, № 3 (2025)
Авторы: Автоношкин Александр Михайлович, Куминов Валерий Павлович, Сидоренко Валентина Геннадьевна, Смецкая Анастасия Сергеевна

Цель. Настоящая работа посвящена рассмотрению вопросов построения интеллектуальной системы анализа и классификации генераторов псевдослучайных чисел (ГПСЧ), объединяющей возможности машинного обучения и направленного перебора для решения задачи определения типа источника случайной последовательности чисел. Основное внимание уделяется выявлению слабостей некриптографических ГПСЧ, которые могут быть предсказуемыми, что несет риски для их использования в области информационной безопасности.

Методы. В ходе исследования использовались методы машинного обучения, в частности нейронные сети, корреляционный анализ и статистические тесты NIST. Разработанные модели обучались на больших выборках выходных последовательностей ГПСЧ, что позволило оценить предсказуемость ГПСЧ и возможность восстановления внутренних состояний. Структура нейронных сетей выбиралась с учетом результатов работы процедур оптимизации значений гиперпараметров нейронных сетей. Показано влияние размера выборки на получаемые результаты.

Результаты. Анализ и классификация ГПСЧ включает несколько этапов: вычисление автокорреляционной функции выходных последовательностей и их спектр, выполнение статистических тестов, разработанных лабораторией NIST; классификация ГПСЧ на основе анализа выходных последовательностей; выявление особенностей внутренней структуры ГПСЧ или его внутренних состояний; прогнозирование значений на выходе. Для алгоритма Xorshift128 нейронная сеть показала высокую точность восстановления выходных значений, подтверждая его уязвимость. Анализ алгоритма Mersenne Twister выявил определенные закономерности, но потребовал более сложных архитектур для полной реконструкции последовательностей. Для алгоритма «стоп-пошел» удалось выявить закономерности построения структуры с использованием алгоритмов машинного обучения, но решить задачу прогнозирования значения на выходе ГПСЧ только по предыдущим значениям выходной последовательности без знания внутренних состояний с высокой точностью не удалось. Линейный конгруэнтный генератор и генератор Геффе удается классифицировать и прогнозировать с использованием алгоритмов направленного перебора. Объединенные в систему модели классифицируют ГПСЧ по их характеристикам и прогнозируют их дальнейшие выходные значения. Анализ полученных результатов подтверждает значимость выбора не только структуры ГПСЧ, но и числовых параметров и задействованных в вычислениях битов внутри чисел.

Заключение. Проведенное исследование подтверждает эффективность сочетания методов машинного обучения и направленного перебора при анализе и классификации ГПСЧ. Полученные результаты позволяют рекомендовать разработанную систему для использования в практических задачах оценки безопасности ГПСЧ. Перспективы дальнейших исследований связаны с расширением множества анализируемых ГПСЧ и рассмотрением других типов нейронных сетей для повышения качества и производительности моделей.

Сохранить в закладках
Использование качественных характеристик изображения для комплексного стегоанализа (2025)
Выпуск: №1, Том 25 (2025)
Авторы: Грачев Ярослав Леонидович, Сидоренко Валентина Геннадьевна

Задача стегоанализа изображений стоит особенно актуально ввиду использования стеганографического скрытия в графических файлах для доставки вредоносного кода и информации при совершении кибератак. В этой связи требуется совершенствование существующих способов детектирования встроенной средствами стеганографии информации. Одним из подходов является использование методики комплексного стегоанализа, предполагающей формирование вывода о детектировании встраивания на основе результатов применения группы из нескольких методов стегоанализа, а также вспомогательных расчетов.

Методы. Для повышения точности детектирования скрытой информации предлагается использовать качественные оценки изображений. В статье продемонстрирована связь между значениями таких оценок и увеличением ошибок работы методов стегоанализа. Методика комплексного стегоанализа, включающая в себя учет качественных характеристик изображений, позволяет повысить точность формируемой оценки путем уменьшения ложноположительных результатов. В статье используются статистические методы подсчета качественных характеристик изображения, оценки корреляции Спирмена, методы машинного обучения.

Результаты. Разработан программный комплекс, интегрирующий описанные в статье элементы методики комплексного стегоанализа, включающие в себя как группу методов стегоанализа, так и набор оцениваемых качественных характеристик изображения. Дана оценка связи качественных характеристик изображения с ошибками в результатах работы методов стегоанализа на пустых контейнерах. Сформированы тестовые выборки и построены модели машинного обучения, формирующие вывод об обнаружении скрытой информации в изображении.

Заключение. Предложенный подход позволяет увеличить точности детектирования скрытой информации при учете оценок качественных характеристик изображения в рамках стегоанализа, что подтверждается экспериментально.

Сохранить в закладках
Выбор алгоритма машинного обучения для обнаружения вторжений в IoT (2024)
Выпуск: № 3, Том 24 (2024)
Авторы: Нианг Папа Малик, Сидоренко Валентина Геннадьевна

Цель. Целью работы является повышение безопасности IoT-устройств путем применения алгоритмов машинного обучения для обнаружения атак в сетях IoT. Актуальность поставленной цели определяется постоянным ростом числа подобных атак в мире и широким распространением систем IoT. В статье приведены соответствующие статистические данные. Анализ имеющихся работ показал, что различные методы рассматривались без связи и сравнения друг с другом, поэтому цель данной работы – определить наиболее перспективный алгоритм машинного обучения для обнаружения атак в сетях IoT – актуальна. Методы. В статье для обнаружения атак в сетях IoT использовались следующие методы машинного обучения: логистическая регрессия, SVC, «случайный лес», метод K-ближайших соседей, метод k-средних, наивный байесовский классификатор и варианты градиентного бустинга (XGBoost, AdaBoost и CatBoost). Новым является сравнение результатов применения контролируемых алгоритмов с алгоритмом K-means, который является неконтролируемым алгоритмом, для обнаружения атак в сетях IoT. Для обучения создаваемых систем обнаружения атак использовался набор данных UNSWNB15, который содержит данные о девяти видах атак. Количество записей составляет более 80 тысяч. Более половины записей – это записи об атаках. Сравнение методов проводилось по нескольким метрикам. Результаты. Разработана структура и реализована
программно система обнаружения вторжений, включающая этапы от анализа исходных данных до вывода окончательных статистических данных. Результаты показывают, что алгоритм «случайный лес» является лучшим из рассмотренных. Одновременно метод имеет хорошие показатели по быстродействию обучения. Это означает, что данный алгоритм может быть развернут и применен с наибольшим успехом. Заключение. В этой статье представлены результаты сравнения различных алгоритмов машинного обучения для обнаружения вторжений в устройства IoT. Точность и кривая ROC-AUC используются для оценки эффективности используемых моделей. Сравнивая используемые модели алгоритмов, мы обнаружили, что модель RandomForestClassifier алгоритма Random Forest имеет хорошую точность, самый высокий AUC и быстрое время выполнения, а это означает, что этот алгоритм является наиболее эффективным при обнаружении вторжений в сети IoT. Продолжение исследований связано с различением типа атаки.

Сохранить в закладках