Обсуждается обусловленность глобальных матриц жесткости регулярных сеток конечных элементов. Предложена оценка сверху наибольшего собственного числа такой матрицы. Оценка строится по локальной матрице жесткости произвольного конечного элемента, следовательно, зависит только от размера и формы такого элемента и не зависит от количества конечных элементов, составляющих регулярную сетку. При построении оценки используются теорема Гершгорина и тот факт, что локальные матрицы жесткости конечных элементов регулярных сеток отличаются друг от друга только перестановкой блоков. На численном примере показано, что построенная оценка обладает высокой точностью и при большом количестве элементов, входящих в сетку, ее можно считать практически совпадающей с наибольшим собственным числом. Показано поведение оценки при изменении качества формы конечных элементов.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.