Архив статей журнала
В современной теории конечных групп наряду с абстрактными теоретико-групповыми методами исследования широко и плодотворно используются методы теории представлений. Теория представлений нашла своё применение в кристаллографии и квантовой механике. Основной вклад в теорию представлений в середине 30-х годов внесли работы Р. Брауэра о модулярных представлениях конечных групп. Теория Брауэра имеет много приложений в теории конечных групп, устанавливает связи с теорией представлений алгебр и раскрывает фундаментальное значение теоретико-числовых вопросов в теории групп и теории представлений. При доказательстве теоремы о разрешимости групп нечетных порядков (Томпсон и Фейт) используется теория модулярных характеров Брауэра. Теория представлений находит своей применение при описании строения групп обратимых элементов центров целочисленных групповых колец [1-2]. В данной статье рассмотрим построение таблицы характеров группы диэдра порядка 12.