Архив статей журнала
В статье представлено семейство точных решений системы уравнений Навье – Стокса, используемой для описания неоднородных однонаправленных течений вязкой жидкости с учетом моментных напряжений. Несмотря на наличие только одной ненулевой компоненты вектора скорости, эта самая компонента зависит от времени и двух пространственных координат. Зависимость от третьей пространственной координаты отсутствует ввиду уравнения несжимаемости, являющегося частным случаем закона сохранения массы. Получающаяся переопределенная система уравнений рассматривается в нестационарной постановке. По-строение семейства точных решений полученной переопределенной системы начинается с анализа однородного решения типа Куэтта как наиболее простого в этом классе. Далее структура решения постепенно усложняется: профиль единственной ненулевой компоненты вектора скорости представлен в виде полинома, зависящего от одной переменной (горизонтальной координаты). Коэффициенты полинома функционально зависят от второй (верти-кальной) координаты и времени. Показано, что, ввиду сильной нелинейности и неоднородности исследуемого уравнения, сумма отдельных его решений не является решением. Также показано, что в линейно независимом базисе степенных функций горизонтальной координаты, определяющих вышеупомянутый полином, рассматриваемое уравнение распадается на цепочку простейших однородных и неоднородных уравнений в частных производных пара-болического типа. Данные уравнения интегрируются последовательно, порядок интегрирования отдельно описан. Результаты, изложенные в данной статье, обобщают ранее представ-ленное авторами семейство точных решений для описания однонаправленных нестационарных течений.
При изучении конвективных крупномасштабных течений (движение жидкости в тон-ком слое) можно для первоначальных исследований рассматривать приближение Стокса при интегрировании уравнения Обербека – Буссинеска. В этом случае конвективную производную в уравнениях переноса импульса и в уравнении теплопроводности полагают тождественно равной нулю. В статье рассмотрено несколько подходов к построению точных решений для медленных (ползущих) течений неоднородно нагретой жидкости. Для установившихся течений приведены формулы для трехмерных течений в классе Линя – Сидорова – Аристова. Гидродинамические поля описываются полиномами. Приведены точные решения для поля скоростей, нелинейно зависящего от двух пространственных координат (продольных, или горизонтальных) с коэффициентами нелинейных форм, зависящими от третьей ко-ординаты. Показано, как можно автоматизировать вычисления неизвестных коэффициентов для формирования гидродинамических полей (скоростей и температуры).
Работа посвящена проблеме построения точных решений вырождающегося уравнения теплопроводности со степенной нелинейностью в случае многих независимых переменных при наличии пространственной (например, осевой или центральной) симметрии. Предложен новый класс автомодельных решений, нахождение которых сводится к решению задачи Ко-ши для нелинейного обыкновенного дифференциального уравнения второго порядка, имею-щего особенности при старшей производной относительно искомой функции и/или незави-симой переменной. Изучение обыкновенного дифференциального уравнения проводится двумя способами: аналитическим и численным. В ходе аналитического исследования приме-няются отрезки рядов Тейлора с рекуррентно вычисляемыми коэффициентами, для которых получены явные формулы. Для численного решения задачи используется итерационный ал-горитм, основанный на методе коллокаций и радиальных базисных функциях. Проведенный численный анализ показал сходимость предложенного численного алгоритма, а также его достаточную точность, позволяющую использовать найденные автомодельные решения для верификации приближенных решений исходного уравнения теплопроводности. Также чис-ленный анализ позволил оценить радиус сходимости построенных рядов Тейлора. Вид по-строенных автомодельных решений, а именно их неограниченность вблизи центра (оси) симметрии, дал возможность исследовать поведение и точность обладающих тем же свой-ством численных решений нелинейного вырождающегося уравнения параболического типа, полученных с помощью предложенного авторами ранее пошагового метода решения.