SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Спецкурс-2 продолжает изложение основ современного группового анализа и посвящен точечным группам преобразований (как непрерывным, так и дискретным), допускаемым обыкновенными дифференциальными уравнениями первого порядка. Этот материал отсутствует в основной программе физико-математических факультетов педагогических университетов.
Спецкурс-2 может быть прочитан студентам (начиная со второго семестра третьего курса, в том числе и студентам тьюторских групп), стажерам, аспирантам первого года обучения, слушателям ФПК, а также всем специалистам смежных и прикладных специальностей, интересующимся групповым анализом.
В монографии рассматриваются вопросы качественной теории дифференциальных уравнений, теории устойчивости и вообще анализ и классификация решений дифференциальных уравнений. Здесь читатель найдет и новые методы исследования, и новые задачи, не встречающиеся в литературе.
В третьем издании расширена и использована при исследовании качественных вопросов глава «Теория подвижных особых точек в вещественной области», новации по методам и результатам и имеющая как теоретическое, так и прикладное значение. Шире рассматриваются в новом издании и вопросы качественной теории и методы обнаружения и построения периодических решений в области центральных и изолированных периодических решений. Добавлена и новая XIV глава «Фрагменты из элементарной конструктивной теории периодических решений автономной системы дифференциальных уравнений».
Книга рассчитана на математиков, физиков и инженер-теоретиков. Она будет полезна и студентам старших курсов механико-математических и физических факультетов.
В настоящем спецкурсе (спецкурс-1) излагаются вводные понятия и теоремы, необходимые для изучения современного группового анализа, но отсутствующие в основной программе физических и математических факультетов педагогических университетов.
Спецкурс-1 может быть прочитан студентам (начиная с третьего курса, в том числе и студентам тьюторских групп), стажерам, аспирантам первого года обучения, слушателям ФПК, а также всем специалистам смежных и прикладных специальностей, интересующимся групповым анализом.
В работе показана роль метода Лаппо-Данилевского в теории линейных дифференциальных уравнений.
Развивается метод применения аппарата Лаппо-Данилевского и аналитической теории линейных систем обыкновенных дифференциальных уравнений к теории систем линейных дифференциальных уравнений с периодическими вещественными коэффициентами.
В этой книге рассматриваются системы линейных дифференциальных уравнений (частично и нелинейные) с периодическими и квазипериодическими коэффициентами. Даются методы доказательства существования и построения ограниченных, неограниченных и периодических решений таких систем дифференциальных уравнений.
Показана роль в этом аналитической теории линейных систем дифференциальных уравнений и методов, развитых Ляпуновым и Лаппо-Данилевским (теория функций от матриц). Используются многие идеи и методы А. М. Ляпунова.
Книга рассчитана на широкий круг математиков — научных работников, аспирантов и студентов старших курсов математических факультетов, а также физиков и инженеров.
Определение производной от данной функции составляет прямую задачу вычисления бесконечно-малых величин. Общий вопрос обратной задачи вычисления бесконечно-малых состоит в том, чтобы определить одну или несколько функций одного или нескольких переменных без данных соотношений между независимыми переменными, функциями и их производными.
Пусть имеется ряд независимых переменных: x₁, x₂, x₃, …, xₙ и ряд функций этих переменных: y₁, y₂, y₃, …, yₘ. Соотношения, о которых идет речь, имеют вид: P(x₁, x₂, …, xₙ, y₁, y₂, …, yₘ, ∂y₁/∂x₁, ∂²y₁/∂x₁², …, ∂²yₘ/∂xₙ², …, ∂yₘ/∂xₙ) = 0 и называются дифференциальными уравнениями; порядок наивысшей производной называется порядком уравнения.
Книга посвящена изучению интересного и сложного пути развития одной из важнейших отраслей математического анализа прошлого и начала настоящего века — аналитической теории дифференциальных уравнений.
Она состоит из двух основных частей, рассматривающих теорию нелинейных и линейных уравнений. Особое внимание в первой части уделено методу мажорантных функций, доказательству теоремы существования решений дифференциальных уравнений, классификации особых точек и исследованию уравнений с неподвижными и подвижными особыми точками; во второй — аналитическому выражению интегралов уравнений, их асимптотическому представлению, проблеме обобщения решений дифференциальных уравнений, определению дифференциального уравнения по заданным свойствам (проблема Римана), алгоритмическому методу решения основных проблем аналитической теории линейных дифференциальных уравнений.
Рассчитана на широкий круг математиков, преподавателей высшей и средней школы, аспирантов и студентов старших курсов высшей школы по математическим специальностям и всех любителей истории математики.
Второе издание «Лекций» в основном воспроизводит текст вышедшего в 1941 г. первого издания. Внесено несколько незначительных дополнений и исправлены замеченные опечатки.
Моим товарищам по научной и педагогической работе и моим слушателям приношу глубокую благодарность за ряд исправлений и уточнений в тексте, которые были ими указаны.
Систематически излагаются основы теории устойчивости решений обыкновенных дифференциальных уравнений и некоторые смежные вопросы.
В дополнении излагаются основы теории почти периодических функций и их приложения к дифференциальным уравнениям. Включены дополнительные сведения к втузовскому курсу высшей математики.
Проблемы устойчивости и стабилизации по отношению к части переменных — части координат фазового вектора динамических систем, а также управления по части переменных (включая игровые задачи управления по части переменных в условиях неопределенности или конфликта), являются междисциплинарными и естественным образом возникают в приложении. Теория и методы исследования таких задач за последние годы получили существенное развитие.
В книге сделана попытка систематизации проведенных исследований и осмысления накопленного в данной области научного потенциала. Значительное внимание уделяется приложениям теории к решению прикладных нелинейных задач устойчивости, стабилизации и управления по части переменных из различных областей науки и техники, а также к решению нелинейных задач устойчивости по всем переменным и построению робастных законов управления нелинейными системами в условиях неопределенности.
Книга написана в доступной, но в то же время достаточно строгой форме: приводится обширная библиография работ в рассматриваемой области. Потенциальный круг читателей достаточной широк: научные работники, преподаватели, инженеры, студенты и все, кто интересуется современной прикладной математикой.