SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящая книга представляет собой сборник задач из различных областей механики, теории теплопроводности, теории электрических и магнитных явлений, и имеет целью дать необходимый материал для приобретения практических навыков в применении методов математической физики.
Рассмотрены основные вопросы, относящиеся к теории уравнений математической физики и отвечающие программе изучения данной дисциплины на факультетах математики и прикладной математики университетов. Изложение материала ведется с широким применением методов функционального анализа. Для студентов, аспирантов, преподавателей вузов, а также для научных работников, занимающихся вопросами построения и исследования математических моделей реальных процессов.
Книга отражает современное развитие теоретико-групповых методов применительно к задачам математической физики. Она включает теорию инвариантов групп преобразований в римановых пространствах и групповой анализ уравнений Эйнштейна.
Изучаются алгебро-геометрические аспекты принципа Гюйгенса и законов сохранения. Излагаются основы теорииформальных групп преобразований Ли—Беклунда, инвариантныхдифференциальных многообразий и проводится групповая классификациянелинейных дифференциальных уравнений.
Рассчитана на математиков, физиков и механиков, интересующихся вопросами качественного анализа дифференциальных уравнений.
Четвертый том известной монографии, посвященный важному для теоретической физики спектральному анализу операторов. Изложение отличается от традиционных руководств физической направленностью в отборе материалов и примеров при сохранении математической строгости.
Для всех кто занимается функциональным анализом и его приложениями в физике.
Третий том известной монографии американских специалистов посвящен теории рассеяния и ее приложениям в теоретической физике. В нем представлены новые результаты, полученные в последнее время, изложение богато иллюстрировано физическими примерами.
Для всех, кто занимается функциональным анализом и его приложениями в физике.
Второй том обширной монографии, задуманной авторами как изложение основных идей и методов современной математической физики, посвящен различным вопросам гармонического анализа и теории операторов в гильбертовом пространстве.
Подробно изложена теория преобразований Фурье в классических пространствах и пространствах обобщенных функций, функциональные методы решения уравнений математической физики, теория расширений симметрических операторов, критерии самосопряженности, основы теории полугрупп и ряд других вопросов.
Своеобразный подход авторов к материалу делает книгу интересной для всех, кто занимается функциональным анализом и его применениями.
Первый том руководства, написанного видными американскими учеными на основе курса, прочитанного ими в Принстонском университете. Ярко и наглядно представлены основные сведения из современного функционального анализа, необходимые физикам.
Описываются начальные понятия, гильбертовы, банаховы, топологические и локально выпуклые пространства, а также основы теории операторов. Следующие тома авторы предполагают посвятить анализу операторов н операторным алгебрам.
В книге много примеров, поясняющих существо рассматриваемых понятий н связи их с физикой, н большое число упражнений. Замечания в конце каждой главы указывают развитие идей как в математическом, так и в физическом направлении.
Своеобразный подход авторов к материалу делает книгу интересной для всех, кто занимается функциональным анализом и его применениями.
Энциклопедия «Математическая физика» отражает основные и перспективные направления этой науки. Она содержит статьи по математическим понятиям и задачам классической и квантовой механики, теории поля, статистической механики, а также по методам математической физики.
Излагается обычная для уравнений математической физики тематика: распространение волн, теплопроводность, вопросы разрешимости, корректности. Акцент делается на линейных уравнениях с частными производными, но рассматриваются и нелинейные процессы. Определенное внимание уделяется нестандартным для рассматриваемой области направлениям. В первую очередь это теоретико-групповые методы изучения уравнений с частными производными, автомодельные решения и другие плоды исследования свойств симметрии. Несколько особняком стоит разъяснение теории дифференциальных форм, от которых не зависит остальное содержание. Но сама эта теория тесно примыкает к уравнениям математической физики и нуждается в простом и ясном описании. Изложение отличается краткостью и прозрачностью.
Для студентов, преподавателей, инженеров и научных работников.
Классические ортогональные полиномы, сферические и гипергеометрические функции, а также функции Бесселя рассматриваются с единой точки зрения как частные решения возникающего во многих задачах математической физики и квантовой механики дифференциального уравнения определенного тина. Для решений итого уравнения с помощью обобщения формулы Родрига найдено интегральное представление, из которого получены все основные свойства специальных функций. Построена также теория классических ортогональных полиномов дискретной переменной как на равномерных, так и неравномерных сетках, установлена их связь с коэффициентами Клебша — Гордана и коэффициентами Рака.
Рассматриваются приложения к задачам математической физики, квантовой механики и вычислительной математики. Книга предназначена для студентов и аспирантов, научных работников и инженеров-исследователей, а также для всех, имеющих дело с математическими расчетами. Она может быть использована при изучении теоретической и математической физики.