SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Эта небольшая книга известного венгерского математика посвящена разнообразным задачам о плотнейшем расположении фигур или тел, а также некоторым смежным вопросам, связанным с этими задачами.
Книга содержит богатый материал, интересный и полезный для студентов университетов и пединститутов; часть этого материала может быть использована преподавателями средней школы в работе математических кружков.
Книга содержит задачи, разнообразные по степени трудности, по всем основным разделам курса геометрии средней школы. Ко всем задачам даны решения или указания к решению.
Книга может быть использована учащимися IX — X классов, желающими углубить и расширить свои математические знания.
Книга имеет форму задачника с указаниями и подробными решениями. Все сведения, необходимые для понимания задач, изложены в тексте книги. Многие из собранных здесь задач предлагались участникам московских школьных математических кружков и олимпиад. Некоторые из задач заимствованы из серьезных научных работ, относящихся к новому разделу математики — комбинаторной геометрии.
Книга рассчитана на интересующихся математикой учащихся старших классов средней школы и студентов-математиков младших курсов.
Книга представляет собой сборник задач с указаниями и подробными решениями. Все задачи посвящены оценкам геометрических величин, чаще всего связанных с треугольником и тетраэдром. Ряд задач заимствован из недавних научных работ; однако, в книге нет ни одной задачи, решение которой требовало бы знаний, выходящих за рамки школьной программы. Многие из задач предлагались на московских математических олимпиадах или разбирались на занятиях школьного математического кружка при МГУ.
Книга рассчитана в первую очередь на школьников старших классов; она может быть использована преподавателями математики для кружковых и факультативных занятий, а также студентами педагогических институтов.
Планиметрия — наука о свойствах фигур плоскости, инвариантных относительно движений плоскости. Фигуры, которые можно совместить движениями, геометрия считает равными и не различает. Всем известны движения евклидовой планиметрии: параллельный перенос, поворот, осевая симметрия. Если изменить группу движений, например, добавить преобразования подобия, то изменится и геометрия. В определённом смысле любая группа преобразований порождает свою геометрию.
В брошюре рассказывается о геометрии, которую порождают преобразования инерциальных систем отсчёта, знакомые из школьного курса физики. Такую геометрию принято называть геометрией Галилея. В чём-то эта странная геометрия отличается от евклидовой, а в чём-то похожа на неё.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 30 марта 2002 года на Малом мехмате МГУ для школьников 9—11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.
Однажды, в самом начале учебного года, мне пришлось услышать разговор двух девочек. Старшая из них перешла в шестой класс, младшая — в пятый. Девочки делились своими впечатлениями об уроках, учителях, подругах, о новых предметах.
Шестиклассницу очень удивили уроки геометрии: «Вот чудеса, — говорила она, — пришла учительница в класс, нарисовала на доске два равных треугольника, а потом целый урок доказывала нам, что они — равные.
Никак не пойму: зачем это нужно?». — «А как же ты урок будешь отвечать?» — спросила младшая девочка. «Выучу по учебнику… вот только очень трудно запомнить, где какую букву нужно ставить…».
Цель книги состоит в том, чтобы ознакомить читателя с основными положениями неевклидовой геометрии Лобачевского. Автор дает в книге краткий очерк жизни и деятельности Н. И. Лобачевского и останавливается на вопросе о происхождении аксиом и их роли в геометрии.
Для понимания книги необходимо знание элементарной геометрии (в ее планиметрической части) и тригонометрии в объеме курса средней школы. Кроме того, автор пользуется инверсией — специальным геометрическим преобразованием, основные свойства которого выясняются в одном из первых параграфов книги.
Автор является крупным специалистом по геометрии Лобачевского, и его книга представляет интерес не только для школьников — любителей математики, но и для студентов младших курсов педагогических институтов и университетов.
Большую роль в развитии геометрии сыграло применение алгебры к изучению свойств геометрических фигур, разросшейся в самостоятельную науку — аналитическую геометрию. Возникновение аналитической геометрии связано с открытием метода координат, являющегося основным её методом.
Координатами точки называются числа, определяющие положение точки на данной линии или на данной поверхности или же в пространстве. Так, положение точки на земной поверхности будет определено, если известны её географические координаты — широта и долгота.
Для нахождения координат точки необходимо задание ориентиров, от которых ведется отсчёт. В случае географических координат такими ориентирами будут экватор и нулевой меридиан.
В книжке рассматриваются задачи на построение, решаемые при помощи одной только линейки или с использованием также какой-либо вспомогательной фигуры. В связи с этим рассматриваются некоторые основные понятия проективной геометрии.
Книжка рассчитана на школьников старших классов, студентов младших курсов пединститутов и университетов и преподавателей математики.
Книга представляет собой сборник задач повышенной трудности по алгебре и элементарным функциям, снабжённых решениями. Это пособие предназначено в первую очередь для самообразования.
Книга может быть полезной преподавателям и учащимся математических школ, руководителям математических кружков, студентам вузов, а также при подготовке к конкурсным экзаменам в вузы, в которых предъявляются повышенные требования по математике.
Книга состоит главным образом из задач, предлагавшихся в вечерней математической школе при МГУ, учащимся физико-математической школы № 2 г. Москвы и слушателям специального семинара для учителей г. Москвы по решению усложнённых задач по математике, руководимого автором в течение ряда лет.