Научный архив: статьи

О ПРИМЕНЕНИИ ТЕХНОЛОГИИ BIG DATA В СЕЛЬСКОМ ХОЗЯЙСТВЕ (2024)

Проблема и цель. В настоящее время в сельском хозяйстве имеется возможность получать большие объемы неструктурированных данных, однако не существует достаточного количества платформ для их накопления, систематизации и обработки. Имеется острая необходимость систематизации баз данных по продаже сельскохозяйственной продукции, запасных частей и расходных материалов сельскохозяйственной техники, оказанию различных услуг и сдаче в аренду техники и оборудования. Цель исследований - оценить возможность применения технологий Big Data для систематизации баз данных по продаже запасных частей и расходных материалов сельскохозяйственной техники.

Методология. В алгоритмах обработки больших данных в последнее время все чаще используют нейронные сети. Нейронная сеть строится из нейронов. Нейроны - это объекты, на вход которых подаются значения xi, x2,.., xn, после чего внутри происходит ряд вычислений и на выходе получается значение y. В машинном обучении используют генетические алгоритмы. Данные алгоритмы основаны на теории эволюции и естественном отборе. В этих алгоритмах сначала вычисляется приспособленность нейронной сети, то есть ее способность выдавать необходимый нам результат, на основании чего происходит размножение нейронных сетей в несколько копий, при этом с каждой из них происходит мутация (т. е. изменение параметров нейронной сети).

Результаты. Использование технологий Big Data может повысить эффективность обработки данных, связанных с изучением снабжения запасными частями сельскохозяйственной техники.

Заключение. Использование технологий Big Data позволяет улучшить качество управления за счет, во-первых, предоставления информации в достаточном объеме, во-вторых, существенного удешевления сбора необходимой информации, а в третьих, упрощения сбора большого количества статистических данных по многим, не связанным между собой хозяйствам, что позволяет производить более качественные научные исследования.

Издание: ВЕСТНИК РЯЗАНСКОГО ГОСУДАРСТВЕННОГО АГРОТЕХНОЛОГИЧЕСКОГО УНИВЕРСИТЕТА ИМ. П. А. КОСТЫЧЕВА
Выпуск: № 1 (2024)
Автор(ы): Костенко Наталья Алексеевна, Костенко Никита Михайлович, Шемякин Александр Владимирович
Сохранить в закладках
МЕТОДОЛОГИЯ ПРИМЕНЕНИЯ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ В ИЗОБРАЗИТЕЛЬНОМ ИСКУССТВЕ СОВРЕМЕННЫХ ХУДОЖНИКОВ КИТАЯ (2025)

Введение. Современные художники все чаще прибегают к новым способам создания произведений искусства – происходит постоянное внедрение нейросетевых программ и новых методик, что приводит к качественно новым результатам и новому художественному мышлению. В данном случае особо интересен опыт Китая, где на законодательном уровне внедряются разработки искусственного интеллекта в создание художественных работ. Теоретический анализ. Существуют несколько концепций, рассматривающих творчество и авторство в эпоху искусственного интеллекта. Исследователи сходятся на мнении, что сейчас мы находимся в эпохе соавторства с нейросетями, так как они могут привносить новые элементы в изначальный замысел художника. Китайские авторы активно используют ChatGPT, Midjourney и другие нейросети для разработки и усовершенствования своих идей.

Заключение. Методология применения нейросетей обогащает творчество современных художников, но одновременно может стать угрозой для когнитивных способностей будущих авторов.

Издание: ИЗВЕСТИЯ САРАТОВСКОГО УНИВЕРСИТЕТА. НОВАЯ СЕРИЯ. СЕРИЯ: ФИЛОСОФИЯ. ПСИХОЛОГИЯ. ПЕДАГОГИКА
Выпуск: Т. 25 № 2 (2025)
Автор(ы): АНДРЕЕВА МАРИЯ АЛЕКСЕЕВНА
Сохранить в закладках
ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА В ЭКОНОМИКО-УПРАВЛЕНЧЕСКОЙ СФЕРЕ (2024)

В статье раскрыты аспекты применения технологий искусственного интеллекта в экономическом образовании. Для выявления различных проблем, возникающих при применении технологий искусственного интеллекта в образовательном процессе, использованы результаты онлайн-опроса, проведённого среди студентов и преподавателей экономического факультета регионального вуза. Автором обозначены преимущества и недостатки внедрения технологий искусственного интеллекта в образовательный процесс в экономико-управленческой сфере. Сформулированы возможные эффекты при применении технологий искусственного интеллекта в образовании, влияющие на качество обучения. Для получения положительных эффектов необходимо соблюдать баланс между участниками образовательного процесса.

Издание: ФОРПОСТ НАУКИ
Выпуск: Т. 18 № 4 (2024)
Автор(ы): Алексеева Виктория Владимировна
Сохранить в закладках
От автоматонов к нейросетям: историкокультурологический анализ генеративного искусства (2025)

Предметом исследования является искусство нейронных сетей как одно из направлений генеративного искусства, возникшее на стыке технологий искусственного интеллекта и культуры. Это направление трансформирует традиционные представления об авторстве, творческом процессе и роли человека, вводя в процесс активное участие алгоритмов и машин. Особое внимание уделено историко-культурологическому анализу, охватывающему эволюцию генеративного искусства - от первых механических автоматонов и экспериментов авангардистов прошлого века, до современных нейросетевых технологий. Цель исследования заключается в изучении культурологических аспектов искусства нейронных сетей, его влияния на восприятие творчества и роли в формировании новых эстетических категорий. Работа направлена на выявление трансформации художественного процесса под воздействием технологий и их значения в глобальных культурных изменениях. Методология исследования основывается на историко-культурологическом анализе, междисциплинарном подходе и философских концепциях авторства и оригинальности. Применяются аналитические методы изучения примеров генеративного искусства и взаимодействия технологий с современной культурой. Новизна исследования заключается в культурологическом осмыслении искусства нейронных сетей как уникального явления, формирующего новые представления о творчестве, авторстве и взаимодействии человека с технологией. Исследование автора выявляет связь между традиционными формами искусства и новыми методами, основанными на алгоритмах глубокого обучения, что позволяет увидеть эволюцию художественного процесса в широком историко-культурологическом контексте. Основные выводы затрагивают переосмысление концепции авторства в искусстве нейронных сетей, роль алгоритмов как равноправного участника творческого процесса, а также расширение традиционных эстетических категорий за счёт использования случайности и автономности. Искусство нейронных сетей представлено как важный феномен культурных трансформаций, способствующий формированию новых художественных форм и глобальному пересмотру отношения к искусству и технологиям.

Издание: ЧЕЛОВЕК И КУЛЬТУРА
Выпуск: № 1 (2025)
Автор(ы): Рахманкулов Богдан Марсельевич
Сохранить в закладках
АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ НЕЙРОННОЙ СЕТИ В ПРОГНОЗИРОВАНИИ МАНЕВРОВ РАСХОЖДЕНИЯ ДВУХ СУДОВ (2024)

В данной статье проанализирована эффективность использования нейронной сети для определения маневров расхождения двух судов. Дано краткое описание алгоритма и скрипта MATLAB, позволяющего находить изменения курсов для предотвращения столкновений пар судов. Описывается процесс создания обучающей выборки с помощью ранее разработанного скрипта, включающий предварительную обработку данных для устранения нереалистичных сценариев сближения пар судов, а также ситуаций, в которых отсутствует опасность столкновения. Обучение нейронных сетей выполнялось с помощью алгоритмов оптимизации Левенберга - Марквардта и Adam. В ходе исследования было обучено одиннадцать нейронных сетей с различными параметрами, из которых выбрана сеть, позволяющая прогнозировать изменения курсов для расхождения на безопасной дистанции для пар судов с точностью 94,8 % (точность прогнозов нейронной сети в данном исследовании определена как количество пар изначально опасно сближающихся судов, дистанция кратчайшего сближения которых после обработки нейронной сетью находилась в пределах 0,8-1,2 мили, поделенной на общее количество пар судов). В исследовании выполнено сравнение времени, затраченного на вычисление маневров расхождения с использованием алгоритма и нейронной сети. Исследование показало, что при увеличении количества опасно сближающихся судов до четырех и выше нейронная сеть затрачивает на прогнозирование маневра расхождения в пять раз меньше времени, чем алгоритм. С увеличением числа опасно сближающихся судов разрыв во времени обработки данных между нейронной сетью и алгоритмом увеличивается, что подтверждает целесообразность применения нейронных сетей в обработке больших массивов данных с парами опасно сближающихся судов. В дальнейших исследованиях планируется создать алгоритм для решения задачи безопасного расхождения группы судов, осуществляемого на основе попарного анализа опасности столкновений.

Издание: ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА
Выпуск: Т. 16 № 2 (2024)
Автор(ы): ТРИПОЛЕЦ ОЛЕГ ЮРЬЕВИЧ
Сохранить в закладках
АЛГОРИТМ ПАРАМЕТРИЧЕСКОЙ ИДЕНТИФИКАЦИИ РАСХОДНОЙ ХАРАКТЕРИСТИКИ СУДНА С ПРИМЕНЕНИЕМ НЕЙРОСЕТЕВОЙ ТЕХНОЛОГИИ (2025)

Цель работы состоит в усовершенствовании методов компьютерного мониторинга и параметрической идентификации моделей расходных характеристик судов для анализа и прогнозирования показателей энергоэффективности объектов водного транспорта, а также оптимизации режимов работы дизель-генераторных агрегатов.

Предложен алгоритм параметрической идентификации характеристик «вход-выход» различных по природе технологических процессов и систем (технических, биологических, экономических, социальных, экологических и др.) по данным измерений с помощью аппроксимоторных (регрессионных) нейронных сетей с возможностью количественной оценки погрешности параметрической оптимизации по эвклидовой норме.

В отличие от известных методов параметрической пригонки модели по статистическим рядам предлагаемый способ базируется на обучении многослойной нейрон ной сети с обратным распространением ошибки отклонений значений выходных сигналов от эталонных с целью ее коррекции за счет введения поправок в значения весовых коэффициентов синаптических связей.

Реализация алгоритма идентификации на основе предлагаемого способа пригонки модели выполнена с помощью радиальных нейронных сетей, имеющих фиксированную структуру с одним скрытым и одним выходным слоями в соответствии с нелинейными и линейными функциями активации нейронов, обеспечивающих точность отображения образов на основе эвклидовой метрики.

Предлагаемый подход позволяет упростить режимы обучения и обеспечить приемлемую точность аппроксимации и идентификации. Алгоритм реализован при оценивании параметров расходной характеристики судна с известной структурой модели потребления топлива по соответствующему статистическому ряду при заданном начальном приближении. Алгоритм может быть применим для идентификации параметров моделей характеристик расхода энергоресурсов как на судах, так и в целом в отрасли внутреннего водного транспорта при вычислении целевых индикаторов и показателей ее развития.

Издание: ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА
Выпуск: Т. 17 № 2 (2025)
Автор(ы): ЧЕРТКОВ АЛЕКСАНДР АЛЕКСАНДРОВИЧ, КАСК ЯРОСЛАВ НИКОЛАЕВИЧ, НИКИФОРОВ ВЛАДИМИР ГРИГОРЬЕВИЧ
Сохранить в закладках
Система сквозного внутреннего контроля на основе искусственного интеллекта в организациях агросферы (2024)

Авторский коллектив рассматривает вопросы разработки и апробации системы сквозного внутреннего контроля в организациях агросферы с использованием искусственного интеллекта (ИИ). В условиях динамично меняющейся рыночной среды такая система становится необходимым этапом для успешного развития сельскохозяйственных организаций. Она позволяет эффективно управлять рисками и адаптироваться к непредсказуемым внешним и внутренним факторам, характерным для аграрного сектора. Предложенная система сквозного внутреннего контроля на основе ИИ охватывает все аспекты деятельности организации и обеспечивает непрерывный контроль на протяжении всего технологического цикла. Она помогает своевременно выявлять и устранять проблемы, связанные с качеством продукции, безопасностью и соответствием стандартам. Использование современных информационных технологий в контрольной деятельности организаций агросферы, предложенных в статье, позволяет превентивно запустить механизм нивелирования рисков, связанных с человеческим фактором, и непрерывно мониторить воздействие факторов внешней и внутренней среды хозяйствования экономического субъекта на основе оперативных информационно-аналитических механизмов.

Издание: НАУКА И ИСКУССТВО УПРАВЛЕНИЯ / ВЕСТНИК ИНСТИТУТА ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА РОССИЙСКОГО ГОСУДАРСТВЕННОГО ГУМАНИТАРНОГО УНИВЕРСИТЕТА
Выпуск: № 4 (2024)
Автор(ы): Катков Юрий Николаевич, Романова Анастасия А., Смычков Семен И., Шалаев Павел Д.
Сохранить в закладках
РАЗРАБОТКА КОМПЛЕКСА НЕЙРОННЫХ СЕТЕЙ ДЛЯ РАСЧЕТА ВЯЗКОСТИ ХИМИЧЕСКОЙ СМЕСИ НА ОСНОВЕ ДЕКОМПОЗИЦИИ ЗАДАЧИ (2025)

Представленная разработка способствует внедрению цифровых технологий в описание процессов нефтехимических предприятий, отвечает потребностям промышленности в быстрых и точных расчетах, сокращает зависимость от дорогостоящих экспериментов и зарубежного программного обеспечения, что делает его актуальным как для науки, так и для реального сектора экономики. Целью исследования является способ расчета вязкости широкой фракции углеводородов с использованием нейронных сетей для повышения точности и эффективности прогнозирования по сравнению с традиционными методами и реализация в виде специализированного программного комплекса. Для оптимизации процесса обучения и ускорения вычислений исходная задача была разделена на несколько более простых подзадач с уменьшенной размерностью параметров, предложенная декомпозиция значительно сократила объем вычислений, что способствует снижению параметричности построенного многослойного полносвязного персептрона и понижению проблематичности процедуры обучения моделей. Для автоматизации сбора информации для обучения многослойного полносвязного персептрона был разработан вспомогательный программный комплекс, формирующий требуемые наборы данных в Unisim. Все построенные нейронные сети обучались на выборках, которые разбивались на обучающее, валидационное и тестовое подмножества по 70, 15 и 15 % от исходного набора соответственно. Потери при обучении не превысили 10-6 при отсутствии переобучения. Работоспособность полученного многослойного полносвязного персептрона дополнительно проверили на производственных данных, не использовавшихся при обучении. Реализация метода осуществлена в виде оригинального специализированного программного комплекса, в котором используется согласованная работа нескольких обученных нейронных сетей для точного расчета вязкости углеводородных смесей. Разработанный программный комплекс доказал свою эффективность и надежность, представляя собой мощный инструмент для расчета вязкости широкой фракции углеводородов при моделировании процессов нефтехимии.

Издание: СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ
Выпуск: № 7 (2025)
Автор(ы): Лаптева Татьяна Владимировна, Лаптев С. А., Бронская Вероника Владимировна
Сохранить в закладках
ПРИМЕНЕНИЕ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ГРУПП РИСКА ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ СРЕДИ ПАЦИЕНТОВ (2025)

Хронические неинфекционные заболевания являются важной медико-социальной проблемой, оказывающей существенное влияние на структуру заболеваемости и смертности населения. Актуальность исследования обусловлена необходимостью повышения точности диагностики, персонализации подходов к профилактике и снижению нагрузки на систему здравоохранения. Цель работы - оценка возможности применения современных методов машинного обучения для прогнозирования вероятности развития повышенного артериального давления у взрослых пациентов, наблюдающихся в условиях поликлинического звена. В работе проанализированы обезличенные карты 1843 пациентов. После предварительной обработки, включающей очистку и нормализацию данных, были исследованы следующие алгоритмы: Random Forest, Gradient Boosting, XGBoost, метод K-ближайших соседей и рекуррентная нейронная сеть LSTM. Для верификации качества построенных моделей применялись метрики точности, полноты, F1-мера и ROC-AUC. Результаты апробации показали, что Gradient Boosting и рекуррентная нейронная сеть LSTM наиболее успешно справились с задачей стратификации выборки: пациенты были корректно распределены на группы с отсутствием заболевания, наличием артериальной гипертензии и повышенным риском ее развития. Были показаны ключевые факторы риска - гиперхолестеринемия, неправильное питание и избыток массы тела. Полученные результаты подтверждают целесообразность и перспективность внедрения инструментов машинного обучения, в частности градиентного бустинга и нейросетевых моделей, в клинические информационные системы с целью автоматизированного скрининга артериальной гипертензии и последующего планирования профилактических мероприятий.

Издание: СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ
Выпуск: № 6 (2025)
Автор(ы): Королева Я. А., Родионов Алексей Владимирович
Сохранить в закладках
ОЦЕНКА КАЧЕСТВА ОБСЛУЖИВАНИЯ ПАССАЖИРОВ НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ НА ОСНОВЕ ОЦЕНКИ ЭМОЦИЙ ПАССАЖИРОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА (2024)

В статье обоснована необходимость реализации и внедрения проекта, основанного на нейронных сетях, который оценивает эмоции пассажиров железнодорожного транспорта. Преимущество данной системы заключается в возможности улучшения качества пассажироперевозок с помощью анализа информации, полученной с помощью сканера эмоций.

Издание: НАУКА И ТЕХНИКА ТРАНСПОРТА
Выпуск: № 1 (2024)
Автор(ы): ЛЯЩЕНКО ЗОЯ ВЛАДИМИРОВНА, Шотт Мария Константиновна, ИГНАТЬЕВА ОЛЕСЯ ВЛАДИМИРОВНА
Сохранить в закладках
Определение авторства «Записок декабриста И. И. Горбачевского» методами машинного обучения (2025)

В представленной работе объектом исследования являются «Записки декабриста И. И. Горбачевского» - яркий образец декабристской мемуаристики, несущий отпечаток исторического самосознания участников движения. Данный источник предлагает ценные сведения о перипетиях взаимоотношений между участниками таких декабристских организаций, как Общество соединенных славян и Южное общество, содержит взгляд изнутри на ход и причины поражения восстания Черниговского полка, предоставляет фактологический материал о судьбе заговорщиков после суда над ними и отправки в Сибирь. Вместе с тем, начавшись еще в советской историографии, по сей день остается до конца не завершенным спор об авторстве этих “Записок”: фигура декабриста Горбачевского в качестве автора рядом исследователей считается чисто номинальной. Вполне очевидно при этом, что личность автора определяет специфику изложенных в “Записках” суждений и привносит в изложение неизбежный субъективный налет, а потому должна приниматься во внимание при работе с источником. Предметом исследования в представленной работе, таким образом, является не разрешенный до сих пор вопрос об авторстве «Записок». Авторами предложено решение задачи определения авторства «Записок декабриста И. И. Горбачевского» при помощи методов машинного обучения. В качестве возможных авторов рассмотрен сам И. И. Горбачевский, а также декабрист П. И. Борисов. Новизна исследования заключается в том, что для определения авторства «Записок» были применены методы машинного обучения. Авторы обучили четыре типа моделей для предсказания авторства каждого из предложений «Записок». В результате большинство предложений «Записок» были оценены, как написанные Горбачевским. Наибольший процент предложений, 69.2 %, был отнесён к Горбачевскому моделью Count Vectorizer + SVC. Точность всех моделей в среднем превышала 80 %, а у основанных на кодировании при помощи BERT в среднем была близка к 90 %. Основным выводом работы, таким образом, можно считать, что «Записки» более вероятно были написаны И. И. Горбачевским, чем П. И. Борисовым. Примененные в рамках представленного исследования методы дают еще один аргумент в пользу этой версии. Код и датасет доступны по ссылке: https://github. com/WLatonov/Gorbachevskiy_notes.

Издание: ИСТОРИЧЕСКАЯ ИНФОРМАТИКА
Выпуск: № 1 (51) (2025)
Автор(ы): Латонов Василий Васильевич, Латонова Анастасия Вячеславовна
Сохранить в закладках
ОЦЕНКА КАЧЕСТВА ИЗОБРАЖЕНИЙ ПРИРОДНОГО ЛАНДШАФТА С ПОВЫШЕННЫМ РАЗРЕШЕНИЕМ НА ОСНОВЕ GAN (2024)

В статье рассматривается применение генеративно-состязательной сети (GAN) в задаче повышения разрешения изображений в два раза. Приводится описание архитектуры GAN на основе сверточной сети. Сеть обучена с использованием набора данных состоящего из 540 изображений природного ландшафта с разрешением 256 на 256 пикселей. В результате тестирования GAN получены усредненные коэффициенты метрик PSNR, SSIM, MFSD, а также среднеквадратичная ошибка вывода модели VGG-19. Приведены результаты сравнения качества изображений с увеличенным разрешением на основе GAN и методом масштабирования с использованием фильтра Ланцоша.

Издание: ВЕСТНИК ТИХООКЕАНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА
Выпуск: № 1 (72) (2024)
Автор(ы): САЙ СЕРГЕЙ ВЛАДИМИРОВИЧ, КУДЯШОВ А. А.
Сохранить в закладках