Влияние искусственного интеллекта на повышение эффективности управления в нефтегазовой отрасли (2025)

В данной статье исследовано влияние искусственного интеллекта на повышение эффективности управления в нефтегазовой отрасли. Авторы, анализируя влияние искусственного интеллекта (ИИ) на повышение эффективности в нефтегазовой отрасли, включая оптимизацию разведки, добычи, логистики и экологической безопасности; размер рынка; долгосрочные тенденции в областях применения и т. д., выделяют ключевые технологические решения. К ним относятся автоматизация анализа данных, прогнозирование рисков и интеграция IoT-платформ. На основе проведенного исследования предлагается расширить использование искусственного интеллекта для повышения эффективности нефтегазовой отрасли посредством внедрения гибридных алгоритмов машинного обучения, усиления межотраслевого сотрудничества и разработки стандартов цифровой безопасности. Особое внимание уделяется роли ИИ в снижении углеродного следа и адаптации к глобальным климатическим инициативам. Использованы методы машинного обучения, анализ больших данных и кейс-стади ведущих компаний (Schlumberger, ExxonMobil, СИБУР). Применены статистические модели для оценки снижения затрат на добычу (до 40%) и повышения точности геофизической разведки. Данные получены из отраслевых отчетов, патентных баз и программных решений. ИИ используется для оцифровки производственных записей и автоматического анализа геологических данных, на основе глубинных нейросетей, что позволяет выявлять проблемы и оптимизировать ключевые процессы разведки нефти. Интеллектуальный анализ рыночного спроса через сбор данных и визуализацию повышает эффективность цепочек поставок. Современные коммерческие решения стимулируют цифровую трансформацию отрасли и инновации. Результаты исследования применимы для оптимизации разведки, добычи и логистики. В отличие от существующих работ, акцент сделан на специфику развивающихся рынков. Несмотря на текущие проблемы (затраты, качество данных), внедрение ИИ позволит: Усилить сбор данных каротажа; Внедрить интеллектуальную геофизическую разведку; Автоматизировать диагностику неисправностей. Ключевое направление - создание инновационного исследовательского центра для ускорения цифровой трансформации и внедрения инноваций.

Издание: ФИНАНСЫ И УПРАВЛЕНИЕ
Выпуск: № 2 (2025)
Автор(ы): Фастович Владимир Владимирович
Сохранить в закладках
Анализ взаимной динамики котировок акций и тональности текстовых упоминаний в СМИ компании «OZON Holdings PLC» с применением корреляционного и сентимент-анализа (2025)

Предметом исследования является количественная оценка взаимосвязи между тональностью упоминаний компании «Ozon Holdings PLC» в русскоязычных средствах массовой информации (СМИ) и динамикой котировок ее акций на Московской бирже. В современной цифровой экономике понимание этого нефинансового фактора имеет критическое значение, особенно для технологических компаний, таких как Ozon, чьи акции характеризуются высокой волатильностью и чувствительностью к информационному фону, а также репутационным рискам. Актуальность работы обусловлена необходимостью для компании Ozon разрабатывать эффективные стратегии управления своим медиа-образом. Это является значимой проблемой в условиях высокой конкуренции и информационного давления, поскольку негативное восприятие способно подорвать доверие инвесторов и негативно сказаться на рыночной капитализации. Целью исследования является установление наличия, направления и силы статистически значимой связи между квартальным агрегированным показателем медиа-тональности и изменением цены акций Ozon. Основная гипотеза предполагает прямую положительную корреляцию: улучшение тональности упоминаний в СМИ ассоциируется с ростом котировок, а преобладание негативной информации - с их снижением. Методология включала сбор квартальных данных о котировках акций Ozon и текстовых упоминаний (Google Новости, 2021-2024). Для сентимент-анализа применялась нейросетевая модель DeepPavlov. Взаимосвязь медиа-тональности и динамики цен акций оценивалась корреляционным анализом Пирсона (α=0.05). Научная новизна заключается в количественной оценке влияния агрегированной поквартальной тональности русскоязычных новостных сообщений на динамику котировок акций крупной российской e-commerce компании, дополняя знания о специфике российского информационного поля. Основные результаты подтвердили гипотезу: выявлена сильная положительная статистически значимая корреляция (r = 0.72, R² = 0.52, p “ 0.001) между медиа-тональностью и ценами акций Ozon. Это указывает, что около 52% вариаций в изменении цен акций могут быть объяснены тональностью СМИ. Исследование имеет ограничения (не учтены соцсети, корпоративные новости, макрофакторы). Практически результаты могут использоваться инвесторами для оценки рисков, а Ozon - для разработки PR-стратегий, оперативного реагирования на негатив и формирования позитивного имиджа для укрепления рыночных позиций и повышения инвестиционной привлекательности.

Издание: ФИНАНСЫ И УПРАВЛЕНИЕ
Выпуск: № 2 (2025)
Автор(ы): Шиболденков Владимир Александрович, Тюрнев Александр Николаевич, Афанасьев Кирилл Миронович, Пресняков Артем Олегович
Сохранить в закладках
МЕТОД ИСПОЛЬЗОВАНИЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ В РАЗРАБОТКЕ СИСТЕМ УПРАВЛЕНИЯ ТЕПЛИЦЕЙ НА ПРЕДПРИЯТИИ АПК (2024)

Проблема и цель. Целью является получение данных в результате моделирования с привлечением нейросети и обоснование возможности использования аппарата искусственных нейронных сетей в тепличном комплексе.

Методология. Агропромышленный комплекс (АПК), как отрасль в целом, невозможен без наличия в нем методов и способов производства, требующих заметного количества внедрённых средств автоматизации производства и управления. Управление практически любой системой невозможно без обработки больших объёмов статистических данных. Использование системы управления тепличным комплексом в сфере АПК имеет те же задачи. В статье приведено описание подхода к проектированию специального модуля системы цифрового управления теплицей с возможностью получения прогнозируемых данных об оценке технических элементов объекта. Объект исследования: тепличный объект общего назначения и цифровые данные, получаемые через коммуникационную сеть от цифровых технических элементов. Кратко описана используемая коммуникационная сеть. Предполагается использование технических элементов, имеющих функции накопления и/или передачи измеряемых данных.

Результаты. На первом этапе была исследована сама возможность применения обученных нейросетей для работы с данными элементов от объектов АПК. На втором исследовалась возможность использования аппарата искусственной нейросети на ограниченном наборе данных для получения прогнозных результатов. В описываемом подходе предполагается использование численных методов для моделирования и метод прогноза с помощью аппарат искусственных нейронных сетей для прогноза состояния технических элементов.

Заключение. Модуль, с использованием нейросети, может быть применен в составе управляющего ПО для мониторинга технических элементов и объектов АПК. Используемый способ применения нейросети с простой архитектурой, с упором на результаты моделирования, позволил исследовать применение такого подхода в системе управления теплицей на основе статистики с объекта.

Издание: ВЕСТНИК РЯЗАНСКОГО ГОСУДАРСТВЕННОГО АГРОТЕХНОЛОГИЧЕСКОГО УНИВЕРСИТЕТА ИМ. П. А. КОСТЫЧЕВА
Выпуск: № 2 (2024)
Автор(ы): Грачев Александр Викторович, Неверов Евгений Николаевич, Горелкина Алёна Константиновна
Сохранить в закладках
Спортивные права на игроков в обеспечительных сделках: правовые аспекты и экономические перспективы (2025)

Статья исследует вопросы эффективного управления спортивными правами на игроков как экономическими активами спортивного клуба. Основной задачей является установление правовой возможности и экономической привлекательности применения указанных прав не только в контексте стандартных трансферных сделок, но и также в качестве объекта сделок обеспечительных, что могло бы способствовать привлечению дополнительных финансовых ресурсов и улучшению общего экономического состояния клубов. Отмечается, что несмотря на отсутствие законодательных ограничений - открытого перечня способов обеспечения исполнения обязательств и принципа свободы договора, наличествуют некоторые сложности, обусловленные высокой волатильностью и недостаточной ликвидностью данного вида активов. Однако уникальность обладания таким активом как спортивные права, способного генерировать несколько косвенных денежных потоков для спортивных клубов помимо трансферной выплаты, может существенно нивелировать данный недостаток. В исследовании рассматриваются современные подходы к оценке трансферной и рыночной стоимости спортивных прав, включая использование технологий машинного обучения. При этом анализируются как российские, так и зарубежные научные разработки в этой сфере, что подчеркивает высокую степень научной заинтересованности в выявлении заветной формулы ценообразования спортивных прав на игроков. Результаты исследования имеют практическое значение для спортивных клубов, открывая перед ними перспективу оптимизации своих финансовых показателей посредством задействования спортивных прав в обеспечительных сделках. Научная новизна работы заключается в комплексном подходе к анализу использования спортивных прав как экономического актива и разработке рекомендаций по их применению в обеспечительных сделках. Такая многоаспектность и значимость спортивных прав в контексте динамично развивающейся спортивной индустрии, требует комплексного научного анализа и проработки нормативно-правового регулирования. Автор приходит к выводу, что спортивные права на игроков представляют собой перспективный экономический актив, который может стать источником дополнительного финансирования для спортивных клубов при условии разработки эффективных методов оценки, управления и наличия правового регулирования. Это позволит спортивным организациям не только укрепить своё финансовое положение, но и повысить конкурентоспособность, в том числе, на международном рынке.

Издание: ЮРИДИЧЕСКИЕ ИССЛЕДОВАНИЯ
Выпуск: № 2 (2025)
Автор(ы): Ахунзянов Данис Фанисович
Сохранить в закладках
КОМПЬЮТЕРНЫЕ МОДЕЛИ ПРОГНОЗИРОВАНИЯ СПРОСА В УПРАВЛЕНИИ ПЛАТНЫМИ ОБРАЗОВАТЕЛЬНЫМИ УСЛУГАМИ (2025)

Статья посвящена анализу и практическому применению компьютерных моделей для прогнозирования спроса в системе управления платными образовательными услугами. В условиях роста конкуренции и цифровизации образовательной сферы точное прогнозирование спроса становится важным фактором для эффективного планирования ресурсов, маркетинга и формирования ценовой политики, что определяет актуальность исследования. Авторы рассматривают как качественные, так и количественные методы прогнозирования: экспертные оценки (метод Дельфи, групповая экспертиза), регрессионный анализ, анализ временных рядов и моделей эластичности. Особое внимание уделено современным технологиям - использованию Python, машинного обучения и анализа больших данных для построения гибких и адаптивных моделей, которые получают в настоящее время должное теоретико-методическое и прикладное применение в экономических исследованиях в системе управления. Цель исследования заключается в разработке и апробации компьютерных моделей, способствующих эффективному управлению образовательными ресурсами и пониманию тенденций на рынке образовательных услуг. В статье представлены практические примеры расчётов, коды на Python, а также визуализации результатов. Кроме того, рассматриваются демографические, экономические и сценарные подходы к моделированию спроса. В результате разработаны современные компьютерные модели, которые позволяют более точно прогнозировать спрос на платные образовательные услуги. Представлены новые подходы к интерпретации результатов прогнозирования, что способствует повышению эффективности управления образовательными ресурсами. Статья подчёркивает важность комплексного и технологически подкреплённого подхода к прогнозированию как основного инструмента развития образовательной организации.

Издание: ЭКОНОМИЧЕСКАЯ СРЕДА
Выпуск: Т. 14 № 2 (2025)
Автор(ы): Черников Алексей Дмитриевич, Чемерис Ольга
Сохранить в закладках
ОРИЕНТИРЫ И ПРОБЛЕМЫ ВНЕДРЕНИЯ ИННОВАЦИОННЫХ РАЗРАБОТОК НА ОСНОВЕ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА (2025)

Статья посвящена анализу влияния искусственного интеллекта на современный бизнес и перспектив его использования. Целью исследования является изучение и обобщение результатов применения, анализ проблем и перспектив внедрения инновационных разработок на основе технологий искусственного интеллекта российскими компаниями. Методика исследования основана на применении методов наблюдения, сравнения, обзорного анализа, сопоставления информации, обобщения, логической оценки. В результате исследования в статье обоснованы преимущества внедрения технологий искусственного интеллекта в различные сферы российской экономики. Ставится вопрос о возможностях искусственного интеллекта и перспективах его реализации в деятельности человека, в частности, рассматривается тезис о влиянии кибертехнологий на развитие бизнес-процессов в нашей стране, при этом даётся анализ обобщённых данных об эффективности использования искусственного интеллекта отдельными отечественными бизнес-компаниями. Особое внимание уделяется оценке рисков и трудностей, связанных с интеграцией искусственного интеллекта в жизнь общества. Определены задачи государственной значимости по их преодолению.

Издание: ЭКОНОМИЧЕСКАЯ СРЕДА
Выпуск: Т. 14 № 1 (2025)
Автор(ы): Шмаркова Лариса Ивановна, Киселева Надежда Александровна, Плотко Иван Сергеевич
Сохранить в закладках
Автоматическая саммаризация родительских чатов в WhatsApp (2025)

Автоматическая саммаризация текста – одна из ключевых задач NLP, предполагающая создание краткой версии исходного текста. В современном мире, где объемы потребляемой человеком информации неустанно растут, задаче саммаризации уделяется все больше внимания. Автореферирование предполагает два основных подхода: экстрактивный и абстрактивный. Последний заключается в автоматическом создании саммари текста, в котором могут содержаться слова и предложения, не встречающиеся в источнике. Этот подход зачастую требует использования нейросетевых моделей, и для его реализации необходимы большие наборы специальным образом размеченных данных. Несмотря на значительные успехи в абстрактивной саммаризации публицистических и научных текстов, методы и датасеты, используемые для работы с монологическими документами, не всегда применимы для саммаризации диалогов. Кроме того, хотя создано достаточно много англоязычных датасетов для саммаризации текстов различных доменов, существующие наборы данных для автоматического аннотирования текстов на русском языке пока немногочисленны. Настоящая статья посвящена разработке и описанию русскоязычного диалогового датасета для саммаризации сообщений в родительских чатах и последующему обучению модели абстрактивной саммаризации для русского языка на авторском наборе диалоговых данных. В качестве материала выступил родительский чат с учителем в мессенджере WhatsApp. Процесс ручной разметки датасета включал в себя разбиение всех сообщений чата на отдельные диалоги, создание саммари и присвоение тематических меток для каждого разговора. В результате был создан датасет, содержащий 616 диалогов, в общей сложности состоящих из 3380 сообщений. Для файн-тьюнинга были выбраны модели-трансформеры ruT5, mT5 и RuGPT (ruT5 и RuGPT были предварительно обучены на русскоязычном датасете для автоматической саммаризации новостей), а для оценки их качества – метрики ROUGE-1, ROUGE-2, ROUGE-L, BLEU и BERTScore. В результате модели ruT5, дообученной на авторском датасете, удалось превзойти бейзлайн по всем пяти метрикам.

Издание: ВЕСТНИК НГУ. СЕРИЯ: ЛИНГВИСТИКА И МЕЖКУЛЬТУРНАЯ КОММУНИКАЦИЯ
Выпуск: Том 23, № 1 (2025)
Автор(ы): Дмитриева Кристина Александровна, Жолус Марина Романовна
Сохранить в закладках
ОПТИМИЗАЦИЯ ПРОЦЕССА ТЕСТИРОВАНИЯ НА ПРОНИКНОВЕНИЕ В АСУ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ (2024)

Темой работы является исследование процесса широкого внедрения автоматизированных информационно-управляющих систем в промышленности, энергетике и на транспорте. Отмечается, что повышение их сложности неизбежно приводит к возникновению различного рода уязвимостей в этих системах, наличие которых позволяет злоумышленникам проникать в автоматизированные управляющие системы, брать их под свой контроль, а также нарушать нормальный режим работы управляемых ими технологических процессов. Подчеркивается, что в течение последнего десятилетия успешные кибератаки были зафиксированы в энергетике, в том числе атомной, в морском судоходстве, в портовых перегрузочных комплексах, а также в других системах. Превентивный подход к обеспечению безопасности автоматизированных управляющих систем заключается в выявлении и использовании существующих уязвимостей путем имитации возможных кибератак. Отмечается, что автоматизация такого достаточно трудоемкого процесса, как «тестирование на проникновение», позволяет сократить время, финансовые затраты и другие ресурсы. Исследованы основные методы выявления уязвимостей, в том числе с применением искусственного интеллекта. В представленном подходе к оптимизации процесса тестирования на проникновение в автоматизированные системы управления технологическими процессами использованы алгоритмы машинного обучения. Предпочтение отдано машинному обучению с подкреплением, основу которого составляет алгоритм Deep Q-learning. Предлагается интеграция методов сканирования сети, построения графа атак и обучения нейронных сетей для эффективного выявления уязвимостей и рисков в сетевых инфраструктурах. Для построения графа атак используются базы знаний MITRE ATT&CK с применением GBVA Framework, для выбора оптимальных действий в процессе тестирования - алгоритм Deep Q-learning.

Издание: ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА
Выпуск: Т. 16 № 3 (2024)
Автор(ы): НЫРКОВ АНАТОЛИЙ ПАВЛОВИЧ, ЮМАШЕВА ЕЛЕНА СЕРГЕЕВНА, КИРИКОВ АНТОН ВИКТОРОВИЧ
Сохранить в закладках
Опыт анализа социального самочувствия горожан: соотнесение характеристик городской инфраструктуры здоровья и тональности текстов из социальных сетей (на примере Санкт-Петербурга) (2024)

В статье описаны результаты исследования социального настроения горожан на основе текстовых данных из социальной сети ВКонтакте. Объект исследования – город Санкт-Петербург. Предлагаемый метод предполагает сопоставление тональности дискуссий пользователей социальных медиа с количественными данными, описывающими инфраструктуру города. Такое сопоставление возможно благодаря тому, что текстовые данные могут быть привязаны к району. Целью исследования было проанализировать возможности предлагаемого подхода, поэтому в качестве количественных данных взяты датасеты, описывающие инфраструктуру города по маркеру «поддержание здоровья»: количество поликлиник, больниц, площадок для занятия спортом. В статье описываются подходы к анализу тональности специфических текстовых данных (приводятся метрики качества используемых моделей), обосновывается актуальность связывания подобного рода данных с количественными показателями (статистиками, участвующими традиционно в методиках оценки благополучия городской среды). В работе продемонстрированы итоговые прикладные результаты: данные исследования нанесены на карту города.

Издание: ВЕСТНИК НГУ. СЕРИЯ: ЛИНГВИСТИКА И МЕЖКУЛЬТУРНАЯ КОММУНИКАЦИЯ
Выпуск: Том 22, № 1 (2024)
Автор(ы): Чижик Анна Владимировна, Садохин Александр Петрович
Сохранить в закладках
ОПРЕДЕЛЕНИЕ МЕСТОПОЛОЖЕНИЯ СУДНА ПО ГЛУБИНАМ ПРИ ПОМОЩИ НЕЙРОННОЙ СЕТИ (2024)

Предложен метод определения места судна по глубинам на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи эхолота, а прогнозирует широту и долготу судна на момент измерения последней глубины. Нейронная сеть имеет архитектуру сети прямого распространения с несколькими скрытыми слоями и полными связями, удовлетворяющую условиям универсальной аппроксимации в соответствии с теоремой Стоуна - Вейерштрасса. Для обучения используется алгоритм Adamax при условии контроля наибольшего значения модуля невязки на каждой итерации. Моделирование выполнялось с использованием языка программирования Python и библиотеки Tensorflow. Модельная поверхность рельефа дна была представлена в виде многочлена второго порядка. Образцы получены на основе виртуальных измерений глубин в узлах координатной сетки с пространственным разрешением не хуже, чем один кабельтов. После сбора образцов выполнялось обучение нейронной сети, в ходе которого не использовалась контрольная выборка. В обучении участвовало несколько нейронных сетей, отличающихся количеством скрытых слоев, а также количеством нейронов в них. После обучения было проведено тестирование, которое предполагало движение судна вдоль меридианов, в точности не совпадающих с используемыми для формирования обучающей выборки. При этом наряду с вариантом средних по долготе меридианов рассмотрен вариант выбора меридианов с использованием датчика случайных чисел равномерного распределения. В результате тестирования все рассмотренные сети показали примерно одинаковую приемлемую навигационную точность, близкую к точности, полученной на обучающей выборке.

Издание: ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА
Выпуск: Т. 16 № 1 (2024)
Автор(ы): ДЕРЯБИН ВИКТОР ВЛАДИМИРОВИЧ
Сохранить в закладках
ОПРЕДЕЛЕНИЕ ШИРОТЫ МЕСТА СУДНА ПО ГЛУБИНАМ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ (2025)

Предложен метод определения широты места судна по глубине на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи однолучевого эхолота и прогнозирует широту на момент измерения последней глубины. Сеть имеет два слоя. Первый слой содержит нейроны с функциями активации в виде гиперболического тангенса, второй состоит из одного нейрона, обладающего тождественной функцией активации. Набор учебных данных состоит из обучающей и контрольной выборок. Обучающая выборка формируется на основе слоя глубин, содержащегося в электронной навигационной карте. Контрольная выборка формируется путем псевдослучайных вариаций входных образцов из обучающей выборки. Каждая такая вариация соответствует постоянному изменению уровня моря вследствие ошибок измерений и/или колебаний ветрового и/или приливоотливного характера. Обучается сеть методом Adamax. Критерием эффективности обучения служит наибольшее значение модуля ошибки прогноза широты, определенное для образцов из контрольной выборки. После обучения сеть проходит тестирование на образцах, полученных аналогичным образом, как для контрольной выборки. Моделирование выполнено с использованием языка программирования Python. Для обучения и реализации работы нейронной сети используется библиотека TensorFlow. Моделирование выполнено для нескольких вариантов архитектуры сети, каждый из которых отличается количеством нейронов в скрытом слое. В результате было зафиксировано, что нейронные сети имеют тенденцию к обучению их прогнозированию широты места судна по последовательности глубин, что позволяет рассматривать их в качестве перспективного инструмента для решения задач батиметрической навигации.

Издание: ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА
Выпуск: Т. 17 № 1 (2025)
Автор(ы): ДЕРЯБИН ВИКТОР ВЛАДИМИРОВИЧ, САЗОНОВ АНАТОЛИЙ ЕФИМОВИЧ
Сохранить в закладках
Применение искусственного интеллекта в сфере финансов на основе анализа международного опыта (2025)

Внедрение систем искусственного интеллекта в финансовую сферу вносит революционные изменения в способы анализа, предоставления информации и управления ею. Машинное обучение – разновидность искусственного интеллекта, которая позволяет ему автономно обучаться и совершенствоваться. В отличие от методов традиционного «жесткого» программирования, машинное обучение использует нейронные сети и глубокое обучение для работы с большими объемами данных для выявления закономерностей и аномалий. Гипотеза работы состоит в том, что для финансовой сферы характерны собственные способы применения ИИ, опирающиеся на наиболее распространенные, но отличающиеся от них варианты. Целью настоящей работы является систематизация способов применения моделей искусственного интеллекта в финансовых учреждениях в разрезе структурных подразделений. Применение искусственного интеллекта позволяет финансовым учреждениям создавать модели, направленные на решение конкретных проблем в условиях постоянно обновляющейся информационной среды. В соответствии с поставленной целью, в данной работе рассматриваются следующие аспекты: общее описание задач, решаемых ИИ, преимущества и недостатки применения ИИ; характеристика распространенности систем искусственного интеллекта в финансовой сфере; характеристика области применения искусственного интеллекта в финансовой сфере. Для выполнения работы автор использовал методы синтеза информации, анализа источников, классификации, сравнительного анализа.

Издание: НАУКА И ИСКУССТВО УПРАВЛЕНИЯ / ВЕСТНИК ИНСТИТУТА ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА РОССИЙСКОГО ГОСУДАРСТВЕННОГО ГУМАНИТАРНОГО УНИВЕРСИТЕТА
Выпуск: № 1 (2025)
Автор(ы): Китинов Мигмер Баатрович
Сохранить в закладках