В связи с расширяющейся географией автомобильных дорог актуальной задачей является оценка состояния их полотна, в последние годы для анализа изображений и повышения их качества все шире применяются разнообразные методы обучения нейронных сетей. В этой cвязи интерес представляет сравнение возможностей различных нейронных сетей в части получения изображения высокого разрешения по критерию среднего времени достижения приемлемого результата. Для анализа выбраны нейронные сети ESRGAN, EDSR,
ESPCN, FSRCNN, LapSRN, каждая из которых способна увеличить разрешение одновременно по ширине и высоте кадра в 4 раза, и, соответственно, количества пикселей в 16 раз. С этой целью для перечисленных сетей было проведено по 5 экспериментов с 5 разными фотографиями в каждом эксперименте, при этом количество пикселей на изображении всякий раз увеличивалось в два раза. Установлено, что наилучшими показателями по затратам времени обладает сеть ESPCN, сеть FSRCNN демонстрирует сопоставимые результаты.
В данной работе предложен метод, комбинирующий вейвлет-преобразования и методы машинного обучения, для классификации состояния растительных культур по цветным цифровым изображениям. Входными данными для классификации являлся сформированный вектор текстурных признаков Харалика.
Реализована программа на высокоуровневом языке программирования Python для классификации цифровых изображений с использованием многоуровневого дискретного вейвлет-преобразования Добеши и классификационных методов машинного обучения – классической логистической регрессии и персептрона. Показана эффективность предложенного метода в решении задачи многоклассовой классификации изображений, сделаны соответствующие выводы, оценены перспективы метода.
Представлен обзор литературы по применению нейронных сетей (НС) в медицине. Рассмотрены разные типы НС и методы их обучения. Описаны случаи использования НС в задачах медицинской диагностики, прогноза лечения, выбора лекарств. Обсуждаются перспективные направления в развитии НС.