В работе рассматривается сочетание применения неравенства Коши (между средним арифметическим и геометрическим) и неравенства Мюрхеда продуктивное в ряде случаев при доказательстве неравенств.
В настоящей заметке излагаются новые результаты о свойствах эффективных механических характеристик усредненной модели взаимодействия слабо сжимаемой вязкой жидкости (или газа) и погруженной в нее двухуровневой щетинистой структуры. Эта модель была построена авторами ранее (см. [1]-[3]) с помощью методов теории гомогенизации, исходя из базовых уравнений микроструктуры. Она естественным образом обобщает хорошо известную систему К.-Х. Хоффмана, Н. Д. Боткина и В. Н. Старовойтова [4], сконструированную в случае одноуровневой структуры, и в приложениях может быть использована, например, в описании аэродинамики в окрестности листа растения, в моделировании поверхности эпителия кровеносных сосудов; и при проектировании биотехнологических устройств, работающих в жидкостях.
Рассматривается однородная задача Дирихле для p(x)-эллиптического уравнения анизотропной диффузии-абсорбции с ограничением значений диффузионного потока. Изучается семейство приближённых решений, получаемых с помощью метода штрафа с применением интегрального оператора штрафа А. Каплана. Устанавливается, что семейство приближённых решений при стремлении малого параметра регуляризации к нулю слабо сходится к решению исходной задачи в пространстве Соболева первого порядка с переменным показателем и что имеет место свойство равномерной аппроксимации в классах функций, непрерывных по Гёльдеру.
В работе проводится обсуждение своевременного иллюстрирования теоретического курса приложениями к решению задач, являющихся математическими моделями реальных процессов. Приведён пример такого приложения, базирующийся на понятиях, как достаточно простых, изучаемых на младших курсах бакалавриата, так и весьма сложных, касающихся завершающих тем курса математического анализа.
В работе проводится обсуждение полного решения одной задачи преобразования плоскости, относящейся как к математическому анализу, так и к аналитической геометрии. Приведено подробное решение задачи, базирующегося на достаточно простых топологических понятиях, при этом демонстрирующее досконально чёткое исследование вопроса.
В работе представлен набор задач творческого характера для факультативного практикума со студентами младших курсов, решение которых направлено на развитие аналитических качеств и способствующих самостоятельному продвижению как в подготовке к студенческим математическим соревнованиям, так и в исследовательской работе.